mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-24 19:16:49 +08:00
Add verbose flag to learn. Only print update parameters info when vebose=true
This commit is contained in:
@@ -432,6 +432,8 @@ namespace Learner
|
||||
// If true, do not dig the folder.
|
||||
bool save_only_once;
|
||||
|
||||
bool verbose;
|
||||
|
||||
double newbob_decay;
|
||||
int newbob_num_trials;
|
||||
uint64_t auto_lr_drop;
|
||||
@@ -644,7 +646,7 @@ namespace Learner
|
||||
// should be no real issues happening since
|
||||
// the read/write phases are isolated.
|
||||
atomic_thread_fence(memory_order_seq_cst);
|
||||
Eval::NNUE::update_parameters();
|
||||
Eval::NNUE::update_parameters(epoch, verbose);
|
||||
atomic_thread_fence(memory_order_seq_cst);
|
||||
|
||||
if (++save_count * mini_batch_size >= eval_save_interval)
|
||||
@@ -943,6 +945,8 @@ namespace Learner
|
||||
// Turn on if you want to pass a pre-shuffled file.
|
||||
bool no_shuffle = false;
|
||||
|
||||
bool verbose = false;
|
||||
|
||||
global_learning_rate = 1.0;
|
||||
|
||||
// elmo lambda
|
||||
@@ -1070,6 +1074,7 @@ namespace Learner
|
||||
UCI::setoption("PruneAtShallowDepth", "false");
|
||||
UCI::setoption("EnableTranspositionTable", "false");
|
||||
}
|
||||
else if (option == "verbose") verbose = true;
|
||||
else
|
||||
{
|
||||
cout << "Unknown option: " << option << ". Ignoring.\n";
|
||||
@@ -1191,6 +1196,8 @@ namespace Learner
|
||||
learn_think.mini_batch_size = mini_batch_size;
|
||||
learn_think.validation_set_file_name = validation_set_file_name;
|
||||
|
||||
learn_think.verbose = verbose;
|
||||
|
||||
cout << "init done." << endl;
|
||||
|
||||
// Start learning.
|
||||
|
||||
@@ -173,7 +173,7 @@ namespace Eval::NNUE {
|
||||
}
|
||||
|
||||
// update the evaluation function parameters
|
||||
void update_parameters() {
|
||||
void update_parameters(uint64_t epoch, bool verbose) {
|
||||
assert(batch_size > 0);
|
||||
|
||||
const auto learning_rate = static_cast<LearnFloatType>(
|
||||
@@ -186,7 +186,7 @@ namespace Eval::NNUE {
|
||||
double abs_discrete_eval_sum = 0.0;
|
||||
double gradient_norm = 0.0;
|
||||
|
||||
bool is_first_batch = true;
|
||||
bool collect_stats = verbose;
|
||||
|
||||
while (examples.size() >= batch_size) {
|
||||
std::vector<Example> batch(examples.end() - batch_size, examples.end());
|
||||
@@ -207,7 +207,7 @@ namespace Eval::NNUE {
|
||||
// The discrete eval will only be valid before first backpropagation,
|
||||
// that is only for the first batch.
|
||||
// Similarily we want only gradients from one batch.
|
||||
if (is_first_batch)
|
||||
if (collect_stats)
|
||||
{
|
||||
abs_eval_diff_sum += std::abs(discrete - shallow);
|
||||
abs_discrete_eval_sum += std::abs(discrete);
|
||||
@@ -217,19 +217,22 @@ namespace Eval::NNUE {
|
||||
|
||||
trainer->backpropagate(gradients.data(), learning_rate);
|
||||
|
||||
is_first_batch = false;
|
||||
collect_stats = false;
|
||||
}
|
||||
|
||||
const double avg_abs_eval_diff = abs_eval_diff_sum / batch_size;
|
||||
const double avg_abs_discrete_eval = abs_discrete_eval_sum / batch_size;
|
||||
if (verbose) {
|
||||
const double avg_abs_eval_diff = abs_eval_diff_sum / batch_size;
|
||||
const double avg_abs_discrete_eval = abs_discrete_eval_sum / batch_size;
|
||||
|
||||
std::cout << "INFO (update_weights):"
|
||||
<< " avg_abs(trainer_eval-nnue_eval) = " << avg_abs_eval_diff
|
||||
<< " , avg_abs(nnue_eval) = " << avg_abs_discrete_eval
|
||||
<< " , avg_relative_error = " << avg_abs_eval_diff / avg_abs_discrete_eval
|
||||
<< " , batch_size = " << batch_size
|
||||
<< " , grad_norm = " << gradient_norm
|
||||
<< std::endl;
|
||||
std::cout << "INFO (update_parameters):"
|
||||
<< " epoch = " << epoch
|
||||
<< " , avg_abs(trainer_eval-nnue_eval) = " << avg_abs_eval_diff
|
||||
<< " , avg_abs(nnue_eval) = " << avg_abs_discrete_eval
|
||||
<< " , avg_relative_error = " << avg_abs_eval_diff / avg_abs_discrete_eval
|
||||
<< " , batch_size = " << batch_size
|
||||
<< " , grad_norm = " << gradient_norm
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
send_messages({{"quantize_parameters"}});
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ namespace Eval::NNUE {
|
||||
double weight);
|
||||
|
||||
// update the evaluation function parameters
|
||||
void update_parameters();
|
||||
void update_parameters(uint64_t epoch, bool verbose);
|
||||
|
||||
// Check if there are any problems with learning
|
||||
void check_health();
|
||||
|
||||
Reference in New Issue
Block a user