Print some weight update stats

This commit is contained in:
Tomasz Sobczyk
2020-10-24 11:15:59 +02:00
committed by nodchip
parent be3937c37b
commit ec436d3dfd
4 changed files with 45 additions and 8 deletions

View File

@@ -599,19 +599,16 @@ namespace Learner
// Evaluation value of deep search
const auto deep_value = (Value)ps.score;
const Value shallow_value =
(rootColor == pos.side_to_move())
? Eval::evaluate(pos)
: -Eval::evaluate(pos);
const Value shallow_value = Eval::evaluate(pos);
const auto loss = calc_cross_entropy(
deep_value,
shallow_value,
(rootColor == pos.side_to_move()) ? shallow_value : -shallow_value,
ps);
local_loss_sum += loss;
Eval::NNUE::add_example(pos, rootColor, ps, 1.0);
Eval::NNUE::add_example(pos, rootColor, shallow_value, ps, 1.0);
};
if (!pos.pseudo_legal((Move)ps.move) || !pos.legal((Move)ps.move))

View File

@@ -118,8 +118,12 @@ namespace Eval::NNUE {
}
// Add 1 sample of learning data
void add_example(Position& pos, Color rootColor,
const Learner::PackedSfenValue& psv, double weight) {
void add_example(
Position& pos,
Color rootColor,
Value discrete_nn_eval,
const Learner::PackedSfenValue& psv,
double weight) {
Example example;
if (rootColor == pos.side_to_move()) {
@@ -128,6 +132,7 @@ namespace Eval::NNUE {
example.sign = -1;
}
example.discrete_nn_eval = discrete_nn_eval;
example.psv = psv;
example.weight = weight;
@@ -176,6 +181,13 @@ namespace Eval::NNUE {
std::lock_guard<std::mutex> lock(examples_mutex);
std::shuffle(examples.begin(), examples.end(), rng);
double abs_eval_diff_sum = 0.0;
double abs_discrete_eval_sum = 0.0;
double gradient_norm = 0.0;
bool is_first_batch = true;
while (examples.size() >= batch_size) {
std::vector<Example> batch(examples.end() - batch_size, examples.end());
examples.resize(examples.size() - batch_size);
@@ -186,13 +198,39 @@ namespace Eval::NNUE {
for (std::size_t b = 0; b < batch.size(); ++b) {
const auto shallow = static_cast<Value>(round<std::int32_t>(
batch[b].sign * network_output[b] * kPonanzaConstant));
const auto discrete = batch[b].sign * batch[b].discrete_nn_eval;
const auto& psv = batch[b].psv;
const double gradient = batch[b].sign * Learner::calc_grad(shallow, psv);
gradients[b] = static_cast<LearnFloatType>(gradient * batch[b].weight);
// The discrete eval will only be valid before first backpropagation,
// that is only for the first batch.
// Similarily we want only gradients from one batch.
if (is_first_batch)
{
abs_eval_diff_sum += std::abs(discrete - shallow);
abs_discrete_eval_sum += std::abs(discrete);
gradient_norm += std::abs(gradient);
}
}
trainer->backpropagate(gradients.data(), learning_rate);
is_first_batch = false;
}
const double avg_abs_eval_diff = abs_eval_diff_sum / batch_size;
const double avg_abs_discrete_eval = abs_discrete_eval_sum / batch_size;
std::cout << "INFO (update_weights):"
<< " avg_abs(trainer_eval-nnue_eval) = " << avg_abs_eval_diff
<< " , avg_abs(nnue_eval) = " << avg_abs_discrete_eval
<< " , avg_relative_error = " << avg_abs_eval_diff / avg_abs_discrete_eval
<< " , batch_size = " << batch_size
<< " , grad_norm = " << gradient_norm
<< std::endl;
send_messages({{"quantize_parameters"}});
}

View File

@@ -22,6 +22,7 @@ namespace Eval::NNUE {
void add_example(
Position& pos,
Color rootColor,
Value discrete_nn_eval,
const Learner::PackedSfenValue& psv,
double weight);

View File

@@ -68,6 +68,7 @@ namespace Eval::NNUE {
struct Example {
std::vector<TrainingFeature> training_features[2];
Learner::PackedSfenValue psv;
Value discrete_nn_eval;
int sign;
double weight;
};