Files
Stockfish/src/nnue/layers/affine_transform.h
MinetaS b976f0a101 Move DotProd code into optimized affine layer
This patch moves the DotProd code into the propagation function which
has sequential access optimization. To prove the speedup, the comparison
is done without the sparse layer. With the sparse layer the effect is
marginal (GCC 0.3%, LLVM/Clang 0.1%).

For both tests, binary is compiled with GCC 14.1. Each test had 50 runs.

Sparse layer included:
```
speedup        = +0.0030
P(speedup > 0) =  1.0000
```

Sparse layer excluded:
```
speedup        = +0.0561
P(speedup > 0) =  1.0000
```

closes https://github.com/official-stockfish/Stockfish/pull/5520

No functional change
2024-08-03 09:42:03 +02:00

307 lines
12 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer AffineTransform of NNUE evaluation function
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#include <cstdint>
#include <iostream>
#include "../nnue_common.h"
#include "simd.h"
/*
This file contains the definition for a fully connected layer (aka affine transform).
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
- that's why AVX512 is hard to implement
- expected use-case is small layers
- inputs are processed in chunks of 4, weights are respectively transposed
- accumulation happens directly to int32s
*/
namespace Stockfish::Eval::NNUE::Layers {
#if defined(USE_SSSE3) || defined(USE_NEON_DOTPROD)
#define ENABLE_SEQ_OPT
#endif
// Fallback implementation for older/other architectures.
// Requires the input to be padded to at least 16 values.
#ifndef ENABLE_SEQ_OPT
template<IndexType InputDimensions, IndexType PaddedInputDimensions, IndexType OutputDimensions>
static void affine_transform_non_ssse3(std::int32_t* output,
const std::int8_t* weights,
const std::int32_t* biases,
const std::uint8_t* input) {
#if defined(USE_SSE2) || defined(USE_NEON)
#if defined(USE_SSE2)
// At least a multiple of 16, with SSE2.
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_NEON)
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < OutputDimensions; ++i)
{
const IndexType offset = i * PaddedInputDimensions;
#if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#endif
}
#else
std::memcpy(output, biases, sizeof(std::int32_t) * OutputDimensions);
// Traverse weights in transpose order to take advantage of input sparsity
for (IndexType i = 0; i < InputDimensions; ++i)
if (input[i])
{
const std::int8_t* w = &weights[i];
const int in = input[i];
for (IndexType j = 0; j < OutputDimensions; ++j)
output[j] += w[j * PaddedInputDimensions] * in;
}
#endif
}
#endif // !ENABLE_SEQ_OPT
template<IndexType InDims, IndexType OutDims>
class AffineTransform {
public:
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static constexpr IndexType get_weight_index_scrambled(IndexType i) {
return (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4
+ i / PaddedInputDimensions * 4 + i % 4;
}
static constexpr IndexType get_weight_index(IndexType i) {
#ifdef ENABLE_SEQ_OPT
return get_weight_index_scrambled(i);
#else
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
void propagate(const InputType* input, OutputType* output) const {
#ifdef ENABLE_SEQ_OPT
if constexpr (OutputDimensions > 1)
{
#if defined(USE_AVX512)
using vec_t = __m512i;
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined(USE_AVX2)
using vec_t = __m256i;
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#elif defined(USE_NEON_DOTPROD)
using vec_t = int32x4_t;
#define vec_set_32 vdupq_n_s32
#define vec_add_dpbusd_32(acc, a, b) \
Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \
vreinterpretq_s8_s32(b))
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);
static_assert(OutputDimensions % OutputSimdWidth == 0);
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType i = 0; i < NumChunks; ++i)
{
const vec_t in0 = vec_set_32(input32[i]);
const auto col0 =
reinterpret_cast<const vec_t*>(&weights[i * OutputDimensions * 4]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in0, col0[k]);
}
vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
#undef vec_set_32
#undef vec_add_dpbusd_32
}
else if constexpr (OutputDimensions == 1)
{
// We cannot use AVX512 for the last layer because there are only 32 inputs
// and the buffer is not padded to 64 elements.
#if defined(USE_AVX2)
using vec_t = __m256i;
#define vec_setzero() _mm256_setzero_si256()
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_hadd Simd::m256_hadd
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero() _mm_setzero_si128()
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_hadd Simd::m128_hadd
#elif defined(USE_NEON_DOTPROD)
using vec_t = int32x4_t;
#define vec_setzero() vdupq_n_s32(0)
#define vec_set_32 vdupq_n_s32
#define vec_add_dpbusd_32(acc, a, b) \
Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \
vreinterpretq_s8_s32(b))
#define vec_hadd Simd::neon_m128_hadd
#endif
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(InputType);
static_assert(PaddedInputDimensions % InputSimdWidth == 0);
constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth;
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < int(NumChunks); ++j)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases[0]);
#undef vec_setzero
#undef vec_set_32
#undef vec_add_dpbusd_32
#undef vec_hadd
}
#else
// Use old implementation for the other architectures.
affine_transform_non_ssse3<InputDimensions, PaddedInputDimensions, OutputDimensions>(
output, weights, biases, input);
#endif
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED