/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Definition of layer AffineTransform of NNUE evaluation function
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#include
#include
#include "../nnue_common.h"
#include "simd.h"
/*
This file contains the definition for a fully connected layer (aka affine transform).
- expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32.
- that's why AVX512 is hard to implement
- expected use-case is small layers
- inputs are processed in chunks of 4, weights are respectively transposed
- accumulation happens directly to int32s
*/
namespace Stockfish::Eval::NNUE::Layers {
#if defined(USE_SSSE3) || defined(USE_NEON_DOTPROD)
#define ENABLE_SEQ_OPT
#endif
// Fallback implementation for older/other architectures.
// Requires the input to be padded to at least 16 values.
#ifndef ENABLE_SEQ_OPT
template
static void affine_transform_non_ssse3(std::int32_t* output,
const std::int8_t* weights,
const std::int32_t* biases,
const std::uint8_t* input) {
#if defined(USE_SSE2) || defined(USE_NEON)
#if defined(USE_SSE2)
// At least a multiple of 16, with SSE2.
constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast(input);
#elif defined(USE_NEON)
constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast(input);
#endif
for (IndexType i = 0; i < OutputDimensions; ++i)
{
const IndexType offset = i * PaddedInputDimensions;
#if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j)
{
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#endif
}
#else
std::memcpy(output, biases, sizeof(std::int32_t) * OutputDimensions);
// Traverse weights in transpose order to take advantage of input sparsity
for (IndexType i = 0; i < InputDimensions; ++i)
if (input[i])
{
const std::int8_t* w = &weights[i];
const int in = input[i];
for (IndexType j = 0; j < OutputDimensions; ++j)
output[j] += w[j * PaddedInputDimensions] * in;
}
#endif
}
#endif // !ENABLE_SEQ_OPT
template
class AffineTransform {
public:
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple(OutputDimensions, MaxSimdWidth);
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}
static constexpr IndexType get_weight_index_scrambled(IndexType i) {
return (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4
+ i / PaddedInputDimensions * 4 + i % 4;
}
static constexpr IndexType get_weight_index(IndexType i) {
#ifdef ENABLE_SEQ_OPT
return get_weight_index_scrambled(i);
#else
return i;
#endif
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian(stream);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian(stream, weights[get_weight_index(i)]);
return !stream.fail();
}
// Forward propagation
void propagate(const InputType* input, OutputType* output) const {
#ifdef ENABLE_SEQ_OPT
if constexpr (OutputDimensions > 1)
{
#if defined(USE_AVX512)
using vec_t = __m512i;
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined(USE_AVX2)
using vec_t = __m256i;
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#elif defined(USE_NEON_DOTPROD)
using vec_t = int32x4_t;
#define vec_set_32 vdupq_n_s32
#define vec_add_dpbusd_32(acc, a, b) \
Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \
vreinterpretq_s8_s32(b))
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);
static_assert(OutputDimensions % OutputSimdWidth == 0);
constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
const auto input32 = reinterpret_cast(input);
const vec_t* biasvec = reinterpret_cast(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];
for (IndexType i = 0; i < NumChunks; ++i)
{
const vec_t in0 = vec_set_32(input32[i]);
const auto col0 =
reinterpret_cast(&weights[i * OutputDimensions * 4]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in0, col0[k]);
}
vec_t* outptr = reinterpret_cast(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
#undef vec_set_32
#undef vec_add_dpbusd_32
}
else if constexpr (OutputDimensions == 1)
{
// We cannot use AVX512 for the last layer because there are only 32 inputs
// and the buffer is not padded to 64 elements.
#if defined(USE_AVX2)
using vec_t = __m256i;
#define vec_setzero() _mm256_setzero_si256()
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#define vec_hadd Simd::m256_hadd
#elif defined(USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero() _mm_setzero_si128()
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#define vec_hadd Simd::m128_hadd
#elif defined(USE_NEON_DOTPROD)
using vec_t = int32x4_t;
#define vec_setzero() vdupq_n_s32(0)
#define vec_set_32 vdupq_n_s32
#define vec_add_dpbusd_32(acc, a, b) \
Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \
vreinterpretq_s8_s32(b))
#define vec_hadd Simd::neon_m128_hadd
#endif
const auto inputVector = reinterpret_cast(input);
static constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(InputType);
static_assert(PaddedInputDimensions % InputSimdWidth == 0);
constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth;
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast(&weights[0]);
for (int j = 0; j < int(NumChunks); ++j)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases[0]);
#undef vec_setzero
#undef vec_set_32
#undef vec_add_dpbusd_32
#undef vec_hadd
}
#else
// Use old implementation for the other architectures.
affine_transform_non_ssse3(
output, weights, biases, input);
#endif
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED