/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer AffineTransform of NNUE evaluation function #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #include #include #include "../nnue_common.h" #include "simd.h" /* This file contains the definition for a fully connected layer (aka affine transform). - expected use-case is for when PaddedInputDimensions == 32 and InputDimensions <= 32. - that's why AVX512 is hard to implement - expected use-case is small layers - inputs are processed in chunks of 4, weights are respectively transposed - accumulation happens directly to int32s */ namespace Stockfish::Eval::NNUE::Layers { #if defined(USE_SSSE3) || defined(USE_NEON_DOTPROD) #define ENABLE_SEQ_OPT #endif // Fallback implementation for older/other architectures. // Requires the input to be padded to at least 16 values. #ifndef ENABLE_SEQ_OPT template static void affine_transform_non_ssse3(std::int32_t* output, const std::int8_t* weights, const std::int32_t* biases, const std::uint8_t* input) { #if defined(USE_SSE2) || defined(USE_NEON) #if defined(USE_SSE2) // At least a multiple of 16, with SSE2. constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 16) / 16; const __m128i Zeros = _mm_setzero_si128(); const auto inputVector = reinterpret_cast(input); #elif defined(USE_NEON) constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 16) / 16; const auto inputVector = reinterpret_cast(input); #endif for (IndexType i = 0; i < OutputDimensions; ++i) { const IndexType offset = i * PaddedInputDimensions; #if defined(USE_SSE2) __m128i sumLo = _mm_cvtsi32_si128(biases[i]); __m128i sumHi = Zeros; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { __m128i row_j = _mm_load_si128(&row[j]); __m128i input_j = _mm_load_si128(&inputVector[j]); __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8); __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8); __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros); __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros); __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo); __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi); sumLo = _mm_add_epi32(sumLo, productLo); sumHi = _mm_add_epi32(sumHi, productHi); } __m128i sum = _mm_add_epi32(sumLo, sumHi); __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sumHigh_64); __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sum_second_32); output[i] = _mm_cvtsi128_si32(sum); #elif defined(USE_NEON) int32x4_t sum = {biases[i]}; const auto row = reinterpret_cast(&weights[offset]); for (IndexType j = 0; j < NumChunks; ++j) { int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]); product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]); sum = vpadalq_s16(sum, product); } output[i] = sum[0] + sum[1] + sum[2] + sum[3]; #endif } #else std::memcpy(output, biases, sizeof(std::int32_t) * OutputDimensions); // Traverse weights in transpose order to take advantage of input sparsity for (IndexType i = 0; i < InputDimensions; ++i) if (input[i]) { const std::int8_t* w = &weights[i]; const int in = input[i]; for (IndexType j = 0; j < OutputDimensions; ++j) output[j] += w[j * PaddedInputDimensions] * in; } #endif } #endif // !ENABLE_SEQ_OPT template class AffineTransform { public: // Input/output type using InputType = std::uint8_t; using OutputType = std::int32_t; // Number of input/output dimensions static constexpr IndexType InputDimensions = InDims; static constexpr IndexType OutputDimensions = OutDims; static constexpr IndexType PaddedInputDimensions = ceil_to_multiple(InputDimensions, MaxSimdWidth); static constexpr IndexType PaddedOutputDimensions = ceil_to_multiple(OutputDimensions, MaxSimdWidth); using OutputBuffer = OutputType[PaddedOutputDimensions]; // Hash value embedded in the evaluation file static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) { std::uint32_t hashValue = 0xCC03DAE4u; hashValue += OutputDimensions; hashValue ^= prevHash >> 1; hashValue ^= prevHash << 31; return hashValue; } static constexpr IndexType get_weight_index_scrambled(IndexType i) { return (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 + i / PaddedInputDimensions * 4 + i % 4; } static constexpr IndexType get_weight_index(IndexType i) { #ifdef ENABLE_SEQ_OPT return get_weight_index_scrambled(i); #else return i; #endif } // Read network parameters bool read_parameters(std::istream& stream) { read_little_endian(stream, biases, OutputDimensions); for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) weights[get_weight_index(i)] = read_little_endian(stream); return !stream.fail(); } // Write network parameters bool write_parameters(std::ostream& stream) const { write_little_endian(stream, biases, OutputDimensions); for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i) write_little_endian(stream, weights[get_weight_index(i)]); return !stream.fail(); } // Forward propagation void propagate(const InputType* input, OutputType* output) const { #ifdef ENABLE_SEQ_OPT if constexpr (OutputDimensions > 1) { #if defined(USE_AVX512) using vec_t = __m512i; #define vec_set_32 _mm512_set1_epi32 #define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32 #elif defined(USE_AVX2) using vec_t = __m256i; #define vec_set_32 _mm256_set1_epi32 #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 #elif defined(USE_SSSE3) using vec_t = __m128i; #define vec_set_32 _mm_set1_epi32 #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 #elif defined(USE_NEON_DOTPROD) using vec_t = int32x4_t; #define vec_set_32 vdupq_n_s32 #define vec_add_dpbusd_32(acc, a, b) \ Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \ vreinterpretq_s8_s32(b)) #endif static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType); static_assert(OutputDimensions % OutputSimdWidth == 0); constexpr IndexType NumChunks = ceil_to_multiple(InputDimensions, 8) / 4; constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth; const auto input32 = reinterpret_cast(input); const vec_t* biasvec = reinterpret_cast(biases); vec_t acc[NumRegs]; for (IndexType k = 0; k < NumRegs; ++k) acc[k] = biasvec[k]; for (IndexType i = 0; i < NumChunks; ++i) { const vec_t in0 = vec_set_32(input32[i]); const auto col0 = reinterpret_cast(&weights[i * OutputDimensions * 4]); for (IndexType k = 0; k < NumRegs; ++k) vec_add_dpbusd_32(acc[k], in0, col0[k]); } vec_t* outptr = reinterpret_cast(output); for (IndexType k = 0; k < NumRegs; ++k) outptr[k] = acc[k]; #undef vec_set_32 #undef vec_add_dpbusd_32 } else if constexpr (OutputDimensions == 1) { // We cannot use AVX512 for the last layer because there are only 32 inputs // and the buffer is not padded to 64 elements. #if defined(USE_AVX2) using vec_t = __m256i; #define vec_setzero() _mm256_setzero_si256() #define vec_set_32 _mm256_set1_epi32 #define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32 #define vec_hadd Simd::m256_hadd #elif defined(USE_SSSE3) using vec_t = __m128i; #define vec_setzero() _mm_setzero_si128() #define vec_set_32 _mm_set1_epi32 #define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32 #define vec_hadd Simd::m128_hadd #elif defined(USE_NEON_DOTPROD) using vec_t = int32x4_t; #define vec_setzero() vdupq_n_s32(0) #define vec_set_32 vdupq_n_s32 #define vec_add_dpbusd_32(acc, a, b) \ Simd::dotprod_m128_add_dpbusd_epi32(acc, vreinterpretq_s8_s32(a), \ vreinterpretq_s8_s32(b)) #define vec_hadd Simd::neon_m128_hadd #endif const auto inputVector = reinterpret_cast(input); static constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(InputType); static_assert(PaddedInputDimensions % InputSimdWidth == 0); constexpr IndexType NumChunks = PaddedInputDimensions / InputSimdWidth; vec_t sum0 = vec_setzero(); const auto row0 = reinterpret_cast(&weights[0]); for (int j = 0; j < int(NumChunks); ++j) { const vec_t in = inputVector[j]; vec_add_dpbusd_32(sum0, in, row0[j]); } output[0] = vec_hadd(sum0, biases[0]); #undef vec_setzero #undef vec_set_32 #undef vec_add_dpbusd_32 #undef vec_hadd } #else // Use old implementation for the other architectures. affine_transform_non_ssse3( output, weights, biases, input); #endif } private: using BiasType = OutputType; using WeightType = std::int8_t; alignas(CacheLineSize) BiasType biases[OutputDimensions]; alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions]; }; } // namespace Stockfish::Eval::NNUE::Layers #endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED