mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-24 19:16:49 +08:00
Merge branch 'master' into trainer
This commit is contained in:
@@ -1,154 +1,173 @@
|
||||
Contributors with >10,000 CPU hours as of January 7, 2020
|
||||
Contributors with >10,000 CPU hours as of Sept 2, 2020
|
||||
Thank you!
|
||||
|
||||
Username CPU Hours Games played
|
||||
--------------------------------------------------
|
||||
noobpwnftw 9305707 695548021
|
||||
mlang 780050 61648867
|
||||
dew 621626 43921547
|
||||
mibere 524702 42238645
|
||||
crunchy 354587 27344275
|
||||
cw 354495 27274181
|
||||
fastgm 332801 22804359
|
||||
JojoM 295750 20437451
|
||||
CSU_Dynasty 262015 21828122
|
||||
Fisherman 232181 18939229
|
||||
ctoks 218866 17622052
|
||||
glinscott 201989 13780820
|
||||
tvijlbrief 201204 15337115
|
||||
velislav 188630 14348485
|
||||
gvreuls 187164 15149976
|
||||
bking_US 180289 11876016
|
||||
nordlandia 172076 13467830
|
||||
leszek 157152 11443978
|
||||
Thanar 148021 12365359
|
||||
spams 141975 10319326
|
||||
drabel 138073 11121749
|
||||
vdv 137850 9394330
|
||||
mgrabiak 133578 10454324
|
||||
TueRens 132485 10878471
|
||||
bcross 129683 11557084
|
||||
marrco 126078 9356740
|
||||
sqrt2 125830 9724586
|
||||
robal 122873 9593418
|
||||
vdbergh 120766 8926915
|
||||
malala 115926 8002293
|
||||
CoffeeOne 114241 5004100
|
||||
dsmith 113189 7570238
|
||||
BrunoBanani 104644 7436849
|
||||
Data 92328 8220352
|
||||
mhoram 89333 6695109
|
||||
davar 87924 7009424
|
||||
xoto 81094 6869316
|
||||
ElbertoOne 80899 7023771
|
||||
grandphish2 78067 6160199
|
||||
brabos 77212 6186135
|
||||
psk 75733 5984901
|
||||
BRAVONE 73875 5054681
|
||||
sunu 70771 5597972
|
||||
sterni1971 70605 5590573
|
||||
MaZePallas 66886 5188978
|
||||
Vizvezdenec 63708 4967313
|
||||
nssy 63462 5259388
|
||||
jromang 61634 4940891
|
||||
teddybaer 61231 5407666
|
||||
Pking_cda 60099 5293873
|
||||
solarlight 57469 5028306
|
||||
dv8silencer 56913 3883992
|
||||
tinker 54936 4086118
|
||||
renouve 49732 3501516
|
||||
Freja 49543 3733019
|
||||
robnjr 46972 4053117
|
||||
rap 46563 3219146
|
||||
Bobo1239 46036 3817196
|
||||
ttruscott 45304 3649765
|
||||
racerschmacer 44881 3975413
|
||||
finfish 44764 3370515
|
||||
eva42 41783 3599691
|
||||
biffhero 40263 3111352
|
||||
bigpen0r 39817 3291647
|
||||
mhunt 38871 2691355
|
||||
ronaldjerum 38820 3240695
|
||||
Antihistamine 38785 2761312
|
||||
pb00067 38038 3086320
|
||||
speedycpu 37591 3003273
|
||||
rkl 37207 3289580
|
||||
VoyagerOne 37050 3441673
|
||||
jbwiebe 35320 2805433
|
||||
cuistot 34191 2146279
|
||||
homyur 33927 2850481
|
||||
manap 32873 2327384
|
||||
gri 32538 2515779
|
||||
oryx 31267 2899051
|
||||
EthanOConnor 30959 2090311
|
||||
SC 30832 2730764
|
||||
csnodgrass 29505 2688994
|
||||
jmdana 29458 2205261
|
||||
strelock 28219 2067805
|
||||
jkiiski 27832 1904470
|
||||
Pyafue 27533 1902349
|
||||
Garf 27515 2747562
|
||||
eastorwest 27421 2317535
|
||||
slakovv 26903 2021889
|
||||
Prcuvu 24835 2170122
|
||||
anst 24714 2190091
|
||||
hyperbolic.tom 24319 2017394
|
||||
Patrick_G 23687 1801617
|
||||
Sharaf_DG 22896 1786697
|
||||
nabildanial 22195 1519409
|
||||
chriswk 21931 1868317
|
||||
achambord 21665 1767323
|
||||
Zirie 20887 1472937
|
||||
team-oh 20217 1636708
|
||||
Isidor 20096 1680691
|
||||
ncfish1 19931 1520927
|
||||
nesoneg 19875 1463031
|
||||
Spprtr 19853 1548165
|
||||
JanErik 19849 1703875
|
||||
agg177 19478 1395014
|
||||
SFTUser 19231 1567999
|
||||
xor12 19017 1680165
|
||||
sg4032 18431 1641865
|
||||
rstoesser 18118 1293588
|
||||
MazeOfGalious 17917 1629593
|
||||
j3corre 17743 941444
|
||||
cisco2015 17725 1690126
|
||||
ianh2105 17706 1632562
|
||||
dex 17678 1467203
|
||||
jundery 17194 1115855
|
||||
iisiraider 17019 1101015
|
||||
horst.prack 17012 1465656
|
||||
Adrian.Schmidt123 16563 1281436
|
||||
purplefishies 16342 1092533
|
||||
wei 16274 1745989
|
||||
ville 16144 1384026
|
||||
eudhan 15712 1283717
|
||||
OuaisBla 15581 972000
|
||||
DragonLord 15559 1162790
|
||||
dju 14716 875569
|
||||
chris 14479 1487385
|
||||
0xB00B1ES 14079 1001120
|
||||
OssumOpossum 13776 1007129
|
||||
enedene 13460 905279
|
||||
bpfliegel 13346 884523
|
||||
Ente 13198 1156722
|
||||
IgorLeMasson 13087 1147232
|
||||
jpulman 13000 870599
|
||||
ako027ako 12775 1173203
|
||||
Nikolay.IT 12352 1068349
|
||||
Andrew Grant 12327 895539
|
||||
joster 12008 950160
|
||||
AdrianSA 11996 804972
|
||||
Nesa92 11455 1111993
|
||||
fatmurphy 11345 853210
|
||||
Dark_wizzie 11108 1007152
|
||||
modolief 10869 896470
|
||||
mschmidt 10757 803401
|
||||
infinity 10594 727027
|
||||
mabichito 10524 749391
|
||||
Thomas A. Anderson 10474 732094
|
||||
thijsk 10431 719357
|
||||
Flopzee 10339 894821
|
||||
crocogoat 10104 1013854
|
||||
SapphireBrand 10104 969604
|
||||
stocky 10017 699440
|
||||
noobpwnftw 19352969 1231459677
|
||||
mlang 957168 61657446
|
||||
dew 949885 56893432
|
||||
mibere 703817 46865007
|
||||
crunchy 427035 27344275
|
||||
cw 416006 27521077
|
||||
JojoM 415904 24479564
|
||||
fastgm 404873 23953472
|
||||
CSU_Dynasty 335774 22850550
|
||||
tvijlbrief 335199 21871270
|
||||
Fisherman 325053 21786603
|
||||
gvreuls 311480 20751516
|
||||
ctoks 275877 18710423
|
||||
velislav 241267 15596372
|
||||
glinscott 217799 13780820
|
||||
nordlandia 211692 13484886
|
||||
bcross 206213 14934233
|
||||
bking_US 198894 11876016
|
||||
leszek 189170 11446821
|
||||
mgrabiak 183896 11778092
|
||||
drabel 181408 12489478
|
||||
TueRens 181349 12192000
|
||||
Thanar 179852 12365359
|
||||
vdv 175171 9881246
|
||||
robal 166948 10702862
|
||||
spams 157128 10319326
|
||||
marrco 149947 9376421
|
||||
sqrt2 147963 9724586
|
||||
vdbergh 137041 8926915
|
||||
CoffeeOne 136294 5004100
|
||||
malala 136182 8002293
|
||||
mhoram 128934 8177193
|
||||
davar 122092 7960001
|
||||
dsmith 122059 7570238
|
||||
xoto 119696 8222144
|
||||
grandphish2 116481 7582197
|
||||
Data 113305 8220352
|
||||
BrunoBanani 112960 7436849
|
||||
ElbertoOne 99028 7023771
|
||||
MaZePallas 98571 6362619
|
||||
brabos 92118 6186135
|
||||
psk 89957 5984901
|
||||
sunu 88463 6007033
|
||||
sterni1971 86948 5613788
|
||||
Vizvezdenec 83752 5343724
|
||||
BRAVONE 81239 5054681
|
||||
nssy 76497 5259388
|
||||
teddybaer 75125 5407666
|
||||
Pking_cda 73776 5293873
|
||||
jromang 70695 4940891
|
||||
solarlight 70517 5028306
|
||||
dv8silencer 70287 3883992
|
||||
Bobo1239 68515 4652287
|
||||
racerschmacer 67468 4935996
|
||||
manap 66273 4121774
|
||||
tinker 63458 4213726
|
||||
linrock 59082 4516053
|
||||
robnjr 57262 4053117
|
||||
Freja 56938 3733019
|
||||
ttruscott 56005 3679485
|
||||
renouve 53811 3501516
|
||||
cuistot 52532 3014920
|
||||
finfish 51360 3370515
|
||||
eva42 51272 3599691
|
||||
rkl 50759 3840947
|
||||
rap 49985 3219146
|
||||
pb00067 49727 3298270
|
||||
ronaldjerum 47654 3240695
|
||||
bigpen0r 47278 3291647
|
||||
biffhero 46564 3111352
|
||||
VoyagerOne 45386 3445881
|
||||
speedycpu 43842 3003273
|
||||
jbwiebe 43305 2805433
|
||||
Antihistamine 41788 2761312
|
||||
mhunt 41735 2691355
|
||||
eastorwest 40387 2812173
|
||||
homyur 39893 2850481
|
||||
gri 39871 2515779
|
||||
oryx 38228 2941656
|
||||
0x3C33 37773 2529097
|
||||
SC 37290 2731014
|
||||
csnodgrass 36207 2688994
|
||||
jmdana 36108 2205261
|
||||
strelock 34716 2074055
|
||||
Garf 33800 2747562
|
||||
EthanOConnor 33370 2090311
|
||||
slakovv 32915 2021889
|
||||
Spprtr 32591 2139601
|
||||
Prcuvu 30377 2170122
|
||||
anst 30301 2190091
|
||||
jkiiski 30136 1904470
|
||||
hyperbolic.tom 29840 2017394
|
||||
Pyafue 29650 1902349
|
||||
OuaisBla 27629 1578000
|
||||
chriswk 26902 1868317
|
||||
achambord 26582 1767323
|
||||
Patrick_G 26276 1801617
|
||||
yorkman 26193 1992080
|
||||
SFTUser 25182 1675689
|
||||
nabildanial 24942 1519409
|
||||
Sharaf_DG 24765 1786697
|
||||
ncfish1 24411 1520927
|
||||
agg177 23890 1395014
|
||||
JanErik 23408 1703875
|
||||
Isidor 23388 1680691
|
||||
Norabor 22976 1587862
|
||||
cisco2015 22880 1759669
|
||||
Zirie 22542 1472937
|
||||
team-oh 22272 1636708
|
||||
MazeOfGalious 21978 1629593
|
||||
sg4032 21945 1643065
|
||||
ianh2105 21725 1632562
|
||||
xor12 21628 1680365
|
||||
dex 21612 1467203
|
||||
nesoneg 21494 1463031
|
||||
horst.prack 20878 1465656
|
||||
0xB00B1ES 20590 1208666
|
||||
j3corre 20405 941444
|
||||
Adrian.Schmidt123 20316 1281436
|
||||
wei 19973 1745989
|
||||
rstoesser 19569 1293588
|
||||
eudhan 19274 1283717
|
||||
Ente 19070 1373058
|
||||
jundery 18445 1115855
|
||||
iisiraider 18247 1101015
|
||||
ville 17883 1384026
|
||||
chris 17698 1487385
|
||||
purplefishies 17595 1092533
|
||||
DragonLord 17014 1162790
|
||||
dju 16515 929427
|
||||
IgorLeMasson 16064 1147232
|
||||
ako027ako 15671 1173203
|
||||
Nikolay.IT 15154 1068349
|
||||
Andrew Grant 15114 895539
|
||||
yurikvelo 15027 1165616
|
||||
OssumOpossum 14857 1007129
|
||||
enedene 14476 905279
|
||||
bpfliegel 14298 884523
|
||||
jpulman 13982 870599
|
||||
joster 13794 950160
|
||||
Nesa92 13786 1114691
|
||||
Dark_wizzie 13422 1007152
|
||||
Hjax 13350 900887
|
||||
Fifis 13313 965473
|
||||
mabichito 12903 749391
|
||||
thijsk 12886 722107
|
||||
crocogoat 12876 1048802
|
||||
AdrianSA 12860 804972
|
||||
Flopzee 12698 894821
|
||||
fatmurphy 12547 853210
|
||||
SapphireBrand 12416 969604
|
||||
modolief 12386 896470
|
||||
scuzzi 12362 833465
|
||||
pgontarz 12151 848794
|
||||
stocky 11954 699440
|
||||
mschmidt 11941 803401
|
||||
infinity 11470 727027
|
||||
torbjo 11387 728873
|
||||
Thomas A. Anderson 11372 732094
|
||||
snicolet 11106 869170
|
||||
amicic 10779 733593
|
||||
rpngn 10712 688203
|
||||
d64 10680 771144
|
||||
basepi 10637 744851
|
||||
jjoshua2 10559 670905
|
||||
dzjp 10343 732529
|
||||
ols 10259 570669
|
||||
lbraesch 10252 647825
|
||||
|
||||
@@ -915,7 +915,7 @@ icc-profile-use:
|
||||
|
||||
learn: config-sanity
|
||||
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) \
|
||||
EXTRACXXFLAGS=' -DEVAL_LEARN -DEVAL_NNUE -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
EXTRACXXFLAGS=' -DEVAL_LEARN -DNNUE_EMBEDDING_OFF -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
EXTRALDFLAGS=' $(BLASLDFLAGS) -fopenmp ' \
|
||||
all
|
||||
|
||||
@@ -923,7 +923,7 @@ profile-learn: config-sanity objclean profileclean
|
||||
@echo ""
|
||||
@echo "Step 1/4. Building instrumented executable ..."
|
||||
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) $(profile_make) \
|
||||
LEARNCXXFLAGS=' -DEVAL_LEARN -DEVAL_NNUE -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
LEARNCXXFLAGS=' -DEVAL_LEARN -DNNUE_EMBEDDING_OFF -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
LEARNLDFLAGS=' $(BLASLDFLAGS) -fopenmp '
|
||||
@echo ""
|
||||
@echo "Step 2/4. Running benchmark for pgo-build ..."
|
||||
@@ -932,7 +932,7 @@ profile-learn: config-sanity objclean profileclean
|
||||
@echo "Step 3/4. Building optimized executable ..."
|
||||
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) objclean
|
||||
$(MAKE) ARCH=$(ARCH) COMP=$(COMP) $(profile_use) \
|
||||
LEARNCXXFLAGS=' -DEVAL_LEARN -DEVAL_NNUE -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
LEARNCXXFLAGS=' -DEVAL_LEARN -DNNUE_EMBEDDING_OFF -DENABLE_TEST_CMD -DUSE_BLAS $(BLASCXXFLAGS) -fopenmp ' \
|
||||
LEARNLDFLAGS=' $(BLASLDFLAGS) -fopenmp '
|
||||
@echo ""
|
||||
@echo "Step 4/4. Deleting profile data ..."
|
||||
|
||||
@@ -164,5 +164,7 @@ vector<string> setup_bench(const Position& current, istream& is) {
|
||||
++posCounter;
|
||||
}
|
||||
|
||||
list.emplace_back("setoption name Use NNUE value true");
|
||||
|
||||
return list;
|
||||
}
|
||||
|
||||
@@ -1,20 +1,8 @@
|
||||
#ifndef _EVALUATE_COMMON_H_
|
||||
#define _EVALUATE_COMMON_H_
|
||||
|
||||
// A common header-like function for modern evaluation functions (EVAL_KPPT and EVAL_KPP_KKPT).
|
||||
|
||||
#if defined(EVAL_NNUE) || defined(EVAL_LEARN)
|
||||
#include <functional>
|
||||
|
||||
// KK file name
|
||||
#define KK_BIN "KK_synthesized.bin"
|
||||
|
||||
// KKP file name
|
||||
#define KKP_BIN "KKP_synthesized.bin"
|
||||
|
||||
// KPP file name
|
||||
#define KPP_BIN "KPP_synthesized.bin"
|
||||
|
||||
#include "../position.h"
|
||||
|
||||
namespace Eval
|
||||
@@ -46,19 +34,11 @@ namespace Eval
|
||||
void init_grad(double eta1, uint64_t eta_epoch, double eta2, uint64_t eta2_epoch, double eta3);
|
||||
|
||||
// Add the gradient difference value to the gradient array for all features that appear in the current phase.
|
||||
// freeze[0]: Flag that kk does not learn
|
||||
// freeze[1]: Flag that kkp does not learn
|
||||
// freeze[2]: Flag that kpp does not learn
|
||||
// freeze[3]: Flag that kppp does not learn
|
||||
void add_grad(Position& pos, Color rootColor, double delt_grad, const std::array<bool, 4>& freeze);
|
||||
void add_grad(Position& pos, Color rootColor, double delt_grad);
|
||||
|
||||
// Do SGD or AdaGrad or something based on the current gradient.
|
||||
// epoch: Generation counter (starting from 0)
|
||||
// freeze[0]: Flag that kk does not learn
|
||||
// freeze[1]: Flag that kkp does not learn
|
||||
// freeze[2]: Flag that kpp does not learn
|
||||
// freeze[3]: Flag that kppp does not learn
|
||||
void update_weights(uint64_t epoch, const std::array<bool, 4>& freeze);
|
||||
void update_weights(uint64_t epoch);
|
||||
|
||||
// Save the evaluation function parameters to a file.
|
||||
// You can specify the extension added to the end of the file.
|
||||
@@ -79,6 +59,4 @@ namespace Eval
|
||||
|
||||
}
|
||||
|
||||
#endif // defined(EVAL_NNUE) || defined(EVAL_LEARN)
|
||||
|
||||
#endif // _EVALUATE_KPPT_COMMON_H_
|
||||
|
||||
@@ -1014,8 +1014,10 @@ make_v:
|
||||
/// evaluation of the position from the point of view of the side to move.
|
||||
|
||||
Value Eval::evaluate(const Position& pos) {
|
||||
|
||||
if (Options["Training"]) {
|
||||
Value v = NNUE::evaluate(pos);
|
||||
|
||||
// Damp down the evaluation linearly when shuffling
|
||||
v = v * (100 - pos.rule50_count()) / 100;
|
||||
|
||||
@@ -1024,12 +1026,19 @@ Value Eval::evaluate(const Position& pos) {
|
||||
|
||||
return v;
|
||||
} else {
|
||||
// Use classical eval if there is a large imbalance
|
||||
// If there is a moderate imbalance, use classical eval with probability (1/8),
|
||||
// as derived from the node counter.
|
||||
bool useClassical = abs(eg_value(pos.psq_score())) * 16 > NNUEThreshold1 * (16 + pos.rule50_count());
|
||||
bool classical = !Eval::useNNUE
|
||||
|| abs(eg_value(pos.psq_score())) * 16 > NNUEThreshold1 * (16 + pos.rule50_count());
|
||||
|| useClassical
|
||||
|| (abs(eg_value(pos.psq_score())) > PawnValueMg / 4 && !(pos.this_thread()->nodes & 0xB));
|
||||
Value v = classical ? Evaluation<NO_TRACE>(pos).value()
|
||||
: NNUE::evaluate(pos) * 5 / 4 + Tempo;
|
||||
|
||||
if (classical && Eval::useNNUE && abs(v) * 16 < NNUEThreshold2 * (16 + pos.rule50_count()))
|
||||
if ( useClassical
|
||||
&& Eval::useNNUE
|
||||
&& abs(v) * 16 < NNUEThreshold2 * (16 + pos.rule50_count()))
|
||||
v = NNUE::evaluate(pos) * 5 / 4 + Tempo;
|
||||
|
||||
// Damp down the evaluation linearly when shuffling
|
||||
|
||||
@@ -38,13 +38,11 @@ namespace Eval {
|
||||
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
|
||||
// for the build process (profile-build and fishtest) to work. Do not change the
|
||||
// name of the macro, as it is used in the Makefile.
|
||||
#define EvalFileDefaultName "nn-82215d0fd0df.nnue"
|
||||
#define EvalFileDefaultName "nn.bin"
|
||||
|
||||
namespace NNUE {
|
||||
|
||||
Value evaluate(const Position& pos);
|
||||
Value compute_eval(const Position& pos);
|
||||
void update_eval(const Position& pos);
|
||||
bool load_eval(std::string streamName, std::istream& stream);
|
||||
|
||||
} // namespace NNUE
|
||||
|
||||
@@ -36,7 +36,7 @@
|
||||
#include <dirent.h>
|
||||
#endif
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
#include "../nnue/evaluate_nnue_learner.h"
|
||||
#include <climits>
|
||||
#include <shared_mutex>
|
||||
@@ -839,9 +839,6 @@ namespace Learner
|
||||
}
|
||||
pos.do_move(next_move, states[ply]);
|
||||
|
||||
// Call node evaluate() for each difference calculation.
|
||||
Eval::NNUE::update_eval(pos);
|
||||
|
||||
} // for (int ply = 0; ; ++ply)
|
||||
|
||||
} // while(!quit)
|
||||
|
||||
@@ -59,12 +59,12 @@
|
||||
// The objective function is the sum of squares of the difference in winning percentage
|
||||
// See learner.cpp for more information.
|
||||
|
||||
//#define LOSS_FUNCTION_IS_WINNING_PERCENTAGE
|
||||
// #define LOSS_FUNCTION_IS_WINNING_PERCENTAGE
|
||||
|
||||
// Objective function is cross entropy
|
||||
// See learner.cpp for more information.
|
||||
// So-called ordinary "rag cloth squeezer"
|
||||
//#define LOSS_FUNCTION_IS_CROSS_ENTOROPY
|
||||
// #define LOSS_FUNCTION_IS_CROSS_ENTOROPY
|
||||
|
||||
// A version in which the objective function is cross entropy, but the win rate function is not passed
|
||||
// #define LOSS_FUNCTION_IS_CROSS_ENTOROPY_FOR_VALUE
|
||||
@@ -83,19 +83,6 @@
|
||||
// rmse calculation is done in one thread, so it takes some time, so reducing the output is effective.
|
||||
#define LEARN_RMSE_OUTPUT_INTERVAL 1
|
||||
|
||||
|
||||
// ----------------------
|
||||
// learning from zero vector
|
||||
// ----------------------
|
||||
|
||||
// Start learning the evaluation function parameters from the zero vector.
|
||||
// Initialize to zero, generate a game, learn from zero vector,
|
||||
// Game generation → If you repeat learning, you will get parameters that do not depend on the professional game. (maybe)
|
||||
// (very time consuming)
|
||||
|
||||
//#define RESET_TO_ZERO_VECTOR
|
||||
|
||||
|
||||
// ----------------------
|
||||
// Floating point for learning
|
||||
// ----------------------
|
||||
@@ -114,59 +101,6 @@ typedef float LearnFloatType;
|
||||
//#include "half_float.h"
|
||||
//typedef HalfFloat::float16 LearnFloatType;
|
||||
|
||||
// ----------------------
|
||||
// save memory
|
||||
// ----------------------
|
||||
|
||||
// Use a triangular array for the Weight array (of which is KPP) to save memory.
|
||||
// If this is used, the weight array for learning will be about 3 times as large as the evaluation function file.
|
||||
|
||||
#define USE_TRIANGLE_WEIGHT_ARRAY
|
||||
|
||||
// ----------------------
|
||||
// dimension down
|
||||
// ----------------------
|
||||
|
||||
// Dimension reduction for mirrors (left/right symmetry) and inverse (forward/backward symmetry).
|
||||
// All on by default.
|
||||
|
||||
// Dimension reduction using mirror and inverse for KK. (Unclear effect)
|
||||
// USE_KK_MIRROR_WRITE must be on when USE_KK_INVERSE_WRITE is on.
|
||||
#define USE_KK_MIRROR_WRITE
|
||||
#define USE_KK_INVERSE_WRITE
|
||||
|
||||
// Dimension reduction using Mirror and Inverse for KKP. (Inverse is not so effective)
|
||||
// When USE_KKP_INVERSE_WRITE is turned on, USE_KKP_MIRROR_WRITE must also be turned on.
|
||||
#define USE_KKP_MIRROR_WRITE
|
||||
#define USE_KKP_INVERSE_WRITE
|
||||
|
||||
// Perform dimension reduction using a mirror for KPP. (Turning this off requires double the teacher position)
|
||||
// KPP has no inverse. (Because there is only K on the front side)
|
||||
#define USE_KPP_MIRROR_WRITE
|
||||
|
||||
// Perform a dimension reduction using a mirror for KPPP. (Turning this off requires double the teacher position)
|
||||
// KPPP has no inverse. (Because there is only K on the front side)
|
||||
#define USE_KPPP_MIRROR_WRITE
|
||||
|
||||
// Reduce the dimension by KPP for learning the KKPP component.
|
||||
// Learning is very slow.
|
||||
// Do not use as it is not debugged.
|
||||
//#define USE_KKPP_LOWER_DIM
|
||||
|
||||
|
||||
// ======================
|
||||
// Settings for creating teacher phases
|
||||
// ======================
|
||||
|
||||
// ----------------------
|
||||
// write out the draw
|
||||
// ----------------------
|
||||
|
||||
// When you reach a draw, write it out as a teacher position
|
||||
// It's subtle whether it's better to do this.
|
||||
// #define LEARN_GENSFEN_USE_DRAW_RESULT
|
||||
|
||||
|
||||
// ======================
|
||||
// configure
|
||||
// ======================
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
#include <dirent.h>
|
||||
#endif
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
#include "../nnue/evaluate_nnue_learner.h"
|
||||
#include <climits>
|
||||
#include <shared_mutex>
|
||||
@@ -172,7 +172,7 @@ namespace Learner
|
||||
// When the objective function is the sum of squares of the difference in winning percentage
|
||||
#if defined (LOSS_FUNCTION_IS_WINNING_PERCENTAGE)
|
||||
// function to calculate the gradient
|
||||
double calc_grad(Value deep, Value shallow, PackedSfenValue& psv)
|
||||
double calc_grad(Value deep, Value shallow, const PackedSfenValue& psv)
|
||||
{
|
||||
// The square of the win rate difference minimizes it in the objective function.
|
||||
// Objective function J = 1/2m Σ (win_rate(shallow)-win_rate(deep) )^2
|
||||
@@ -667,14 +667,12 @@ namespace Learner
|
||||
learn_sum_entropy_win = 0.0;
|
||||
learn_sum_entropy = 0.0;
|
||||
#endif
|
||||
#if defined(EVAL_NNUE)
|
||||
newbob_scale = 1.0;
|
||||
newbob_decay = 1.0;
|
||||
newbob_num_trials = 2;
|
||||
best_loss = std::numeric_limits<double>::infinity();
|
||||
latest_loss_sum = 0.0;
|
||||
latest_loss_count = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
virtual void thread_worker(size_t thread_id);
|
||||
@@ -696,15 +694,9 @@ namespace Learner
|
||||
|
||||
bool stop_flag;
|
||||
|
||||
// Discount rate
|
||||
double discount_rate;
|
||||
|
||||
// Option to exclude early stage from learning
|
||||
int reduction_gameply;
|
||||
|
||||
// Option not to learn kk/kkp/kpp/kppp
|
||||
std::array<bool, 4> freeze;
|
||||
|
||||
// If the absolute value of the evaluation value of the deep search of the teacher phase exceeds this value, discard the teacher phase.
|
||||
int eval_limit;
|
||||
|
||||
@@ -724,7 +716,6 @@ namespace Learner
|
||||
atomic<double> learn_sum_entropy;
|
||||
#endif
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
shared_timed_mutex nn_mutex;
|
||||
double newbob_scale;
|
||||
double newbob_decay;
|
||||
@@ -733,7 +724,6 @@ namespace Learner
|
||||
double latest_loss_sum;
|
||||
uint64_t latest_loss_count;
|
||||
std::string best_nn_directory;
|
||||
#endif
|
||||
|
||||
uint64_t eval_save_interval;
|
||||
uint64_t loss_output_interval;
|
||||
@@ -753,13 +743,10 @@ namespace Learner
|
||||
// It doesn't matter if you have disabled the substitution table.
|
||||
TT.new_search();
|
||||
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
std::cout << "PROGRESS: " << now_string() << ", ";
|
||||
std::cout << sr.total_done << " sfens";
|
||||
std::cout << ", iteration " << epoch;
|
||||
std::cout << ", eta = " << Eval::get_eta() << ", ";
|
||||
#endif
|
||||
|
||||
#if !defined(LOSS_FUNCTION_IS_ELMO_METHOD)
|
||||
double sum_error = 0;
|
||||
@@ -813,6 +800,7 @@ namespace Learner
|
||||
auto task =
|
||||
[
|
||||
&ps,
|
||||
#if defined (LOSS_FUNCTION_IS_ELMO_METHOD)
|
||||
&test_sum_cross_entropy_eval,
|
||||
&test_sum_cross_entropy_win,
|
||||
&test_sum_cross_entropy,
|
||||
@@ -820,6 +808,11 @@ namespace Learner
|
||||
&test_sum_entropy_win,
|
||||
&test_sum_entropy,
|
||||
&sum_norm,
|
||||
#else
|
||||
&sum_error,
|
||||
&sum_error2,
|
||||
&sum_error3,
|
||||
#endif
|
||||
&task_count,
|
||||
&move_accord_count
|
||||
](size_t task_thread_id)
|
||||
@@ -841,19 +834,6 @@ namespace Learner
|
||||
auto task_search_result = qsearch(task_pos);
|
||||
|
||||
auto shallow_value = task_search_result.first;
|
||||
{
|
||||
const auto rootColor = task_pos.side_to_move();
|
||||
const auto pv = task_search_result.second;
|
||||
std::vector<StateInfo, AlignedAllocator<StateInfo>> states(pv.size());
|
||||
for (size_t i = 0; i < pv.size(); ++i)
|
||||
{
|
||||
task_pos.do_move(pv[i], states[i]);
|
||||
Eval::NNUE::update_eval(task_pos);
|
||||
}
|
||||
shallow_value = (rootColor == task_pos.side_to_move()) ? Eval::evaluate(task_pos) : -Eval::evaluate(task_pos);
|
||||
for (auto it = pv.rbegin(); it != pv.rend(); ++it)
|
||||
task_pos.undo_move(*it);
|
||||
}
|
||||
|
||||
// Evaluation value of deep search
|
||||
auto deep_value = (Value)ps.score;
|
||||
@@ -917,18 +897,17 @@ namespace Learner
|
||||
#if !defined(LOSS_FUNCTION_IS_ELMO_METHOD)
|
||||
// rmse = root mean square error: mean square error
|
||||
// mae = mean absolute error: mean absolute error
|
||||
auto dsig_rmse = std::sqrt(sum_error / (sfen_for_mse.size() + epsilon));
|
||||
auto dsig_mae = sum_error2 / (sfen_for_mse.size() + epsilon);
|
||||
auto eval_mae = sum_error3 / (sfen_for_mse.size() + epsilon);
|
||||
constexpr double epsilon = 0.000001;
|
||||
auto dsig_rmse = std::sqrt(sum_error / (sr.sfen_for_mse.size() + epsilon));
|
||||
auto dsig_mae = sum_error2 / (sr.sfen_for_mse.size() + epsilon);
|
||||
auto eval_mae = sum_error3 / (sr.sfen_for_mse.size() + epsilon);
|
||||
cout << " , dsig rmse = " << dsig_rmse << " , dsig mae = " << dsig_mae
|
||||
<< " , eval mae = " << eval_mae;
|
||||
<< " , eval mae = " << eval_mae << endl;
|
||||
#endif
|
||||
|
||||
#if defined ( LOSS_FUNCTION_IS_ELMO_METHOD )
|
||||
#if defined(EVAL_NNUE)
|
||||
latest_loss_sum += test_sum_cross_entropy - test_sum_entropy;
|
||||
latest_loss_count += sr.sfen_for_mse.size();
|
||||
#endif
|
||||
|
||||
// learn_cross_entropy may be called train cross entropy in the world of machine learning,
|
||||
// When omitting the acronym, it is nice to be able to distinguish it from test cross entropy(tce) by writing it as lce.
|
||||
@@ -967,8 +946,6 @@ namespace Learner
|
||||
learn_sum_entropy_eval = 0.0;
|
||||
learn_sum_entropy_win = 0.0;
|
||||
learn_sum_entropy = 0.0;
|
||||
#else
|
||||
<< endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -987,14 +964,10 @@ namespace Learner
|
||||
// display mse (this is sometimes done only for thread 0)
|
||||
// Immediately after being read from the file...
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
// Lock the evaluation function so that it is not used during updating.
|
||||
// Lock the evaluation function so that it is not used during updating.
|
||||
shared_lock<shared_timed_mutex> read_lock(nn_mutex, defer_lock);
|
||||
if (sr.next_update_weights <= sr.total_done ||
|
||||
(thread_id != 0 && !read_lock.try_lock()))
|
||||
#else
|
||||
if (sr.next_update_weights <= sr.total_done)
|
||||
#endif
|
||||
{
|
||||
if (thread_id != 0)
|
||||
{
|
||||
@@ -1018,16 +991,6 @@ namespace Learner
|
||||
continue;
|
||||
}
|
||||
|
||||
#if !defined(EVAL_NNUE)
|
||||
// Output the current time. Output every time.
|
||||
std::cout << sr.total_done << " sfens , at " << now_string() << std::endl;
|
||||
|
||||
// Reflect the gradient in the weight array at this timing. The calculation of the gradient is just right for each 1M phase in terms of mini-batch.
|
||||
Eval::update_weights(epoch, freeze);
|
||||
|
||||
// Display epoch and current eta for debugging.
|
||||
std::cout << "epoch = " << epoch << " , eta = " << Eval::get_eta() << std::endl;
|
||||
#else
|
||||
{
|
||||
// update parameters
|
||||
|
||||
@@ -1035,7 +998,6 @@ namespace Learner
|
||||
lock_guard<shared_timed_mutex> write_lock(nn_mutex);
|
||||
Eval::NNUE::UpdateParameters(epoch);
|
||||
}
|
||||
#endif
|
||||
++epoch;
|
||||
|
||||
// Save once every 1 billion phases.
|
||||
@@ -1069,9 +1031,7 @@ namespace Learner
|
||||
// loss calculation
|
||||
calc_loss(thread_id, done);
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
Eval::NNUE::CheckHealth();
|
||||
#endif
|
||||
|
||||
// Make a note of how far you have totaled.
|
||||
sr.last_done = sr.total_done;
|
||||
@@ -1125,26 +1085,11 @@ namespace Learner
|
||||
cout << "Error! : illigal packed sfen = " << pos.fen() << endl;
|
||||
goto RetryRead;
|
||||
}
|
||||
#if !defined(EVAL_NNUE)
|
||||
{
|
||||
auto key = pos.key();
|
||||
// Exclude the phase used for rmse calculation.
|
||||
if (sr.is_for_rmse(key) && skip_duplicated_positions_in_training)
|
||||
goto RetryRead;
|
||||
|
||||
// Exclude the most recently used aspect.
|
||||
auto hash_index = size_t(key & (sr.READ_SFEN_HASH_SIZE - 1));
|
||||
auto key2 = sr.hash[hash_index];
|
||||
if (key == key2 && skip_duplicated_positions_in_training)
|
||||
goto RetryRead;
|
||||
sr.hash[hash_index] = key; // Replace with the current key.
|
||||
}
|
||||
#endif
|
||||
|
||||
// There is a possibility that all the pieces are blocked and stuck.
|
||||
// Also, the declaration win phase is excluded from learning because you cannot go to leaf with PV moves.
|
||||
// (shouldn't write out such teacher aspect itself, but may have written it out with an old generation routine)
|
||||
// Skip the position if there are no legal moves (=checkmated or stalemate).
|
||||
// Skip the position if there are no legal moves (=checkmated or stalemate).
|
||||
if (MoveList<LEGAL>(pos).size() == 0)
|
||||
goto RetryRead;
|
||||
|
||||
@@ -1163,32 +1108,6 @@ namespace Learner
|
||||
|
||||
auto rootColor = pos.side_to_move();
|
||||
|
||||
// If the initial PV is different, it is better not to use it for learning.
|
||||
// If it is the result of searching a completely different place, it may become noise.
|
||||
// It may be better not to study where the difference in evaluation values is too large.
|
||||
|
||||
#if 0
|
||||
// If you do this, about 13% of the phases will be excluded from the learning target. Good and bad are subtle.
|
||||
if (pv.size() >= 1 && (uint16_t)pv[0] != ps.move)
|
||||
{
|
||||
// dbg_hit_on(false);
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
// It may be better not to study where the difference in evaluation values is too large.
|
||||
// → It's okay because it passes the win rate function... About 30% of the phases are out of the scope of learning...
|
||||
if (abs((int16_t)r.first - ps.score) >= Eval::PawnValue * 4)
|
||||
{
|
||||
// dbg_hit_on(false);
|
||||
continue;
|
||||
}
|
||||
// dbg_hit_on(true);
|
||||
#endif
|
||||
|
||||
int ply = 0;
|
||||
|
||||
// A helper function that adds the gradient to the current phase.
|
||||
auto pos_add_grad = [&]() {
|
||||
// Use the value of evaluate in leaf as shallow_value.
|
||||
@@ -1197,13 +1116,11 @@ namespace Learner
|
||||
// I don't think this is a very desirable property, as the aspect that gives that gradient will be different.
|
||||
// I have turned off the substitution table, but since the pv array has not been updated due to one stumbling block etc...
|
||||
|
||||
Value shallow_value = (rootColor == pos.side_to_move()) ? Eval::evaluate(pos) : -Eval::evaluate(pos);
|
||||
|
||||
#if defined (LOSS_FUNCTION_IS_ELMO_METHOD)
|
||||
// Calculate loss for training data
|
||||
double learn_cross_entropy_eval, learn_cross_entropy_win, learn_cross_entropy;
|
||||
double learn_entropy_eval, learn_entropy_win, learn_entropy;
|
||||
calc_cross_entropy(deep_value, shallow_value, ps, learn_cross_entropy_eval, learn_cross_entropy_win, learn_cross_entropy, learn_entropy_eval, learn_entropy_win, learn_entropy);
|
||||
calc_cross_entropy(deep_value, r.first, ps, learn_cross_entropy_eval, learn_cross_entropy_win, learn_cross_entropy, learn_entropy_eval, learn_entropy_win, learn_entropy);
|
||||
learn_sum_cross_entropy_eval += learn_cross_entropy_eval;
|
||||
learn_sum_cross_entropy_win += learn_cross_entropy_win;
|
||||
learn_sum_cross_entropy += learn_cross_entropy;
|
||||
@@ -1212,73 +1129,14 @@ namespace Learner
|
||||
learn_sum_entropy += learn_entropy;
|
||||
#endif
|
||||
|
||||
#if !defined(EVAL_NNUE)
|
||||
// Slope
|
||||
double dj_dw = calc_grad(deep_value, shallow_value, ps);
|
||||
|
||||
// Add jd_dw as the gradient (∂J/∂Wj) for the feature vector currently appearing in the leaf node.
|
||||
|
||||
// If it is not PV termination, apply a discount rate.
|
||||
if (discount_rate != 0 && ply != (int)pv.size())
|
||||
dj_dw *= discount_rate;
|
||||
|
||||
// Since we have reached leaf, add the gradient to the features that appear in this phase.
|
||||
// Update based on gradient later.
|
||||
Eval::add_grad(pos, rootColor, dj_dw, freeze);
|
||||
#else
|
||||
const double example_weight =
|
||||
(discount_rate != 0 && ply != (int)pv.size()) ? discount_rate : 1.0;
|
||||
Eval::NNUE::AddExample(pos, rootColor, ps, example_weight);
|
||||
#endif
|
||||
Eval::NNUE::AddExample(pos, rootColor, ps, 1.0);
|
||||
|
||||
// Since the processing is completed, the counter of the processed number is incremented
|
||||
sr.total_done++;
|
||||
};
|
||||
|
||||
StateInfo state[MAX_PLY]; // PV of qsearch cannot be so long.
|
||||
bool illegal_move = false;
|
||||
for (auto m : pv)
|
||||
{
|
||||
// I shouldn't be an illegal player.
|
||||
// An illegal move sometimes comes here...
|
||||
if (!pos.pseudo_legal(m) || !pos.legal(m))
|
||||
{
|
||||
//cout << pos << m << endl;
|
||||
//assert(false);
|
||||
illegal_move = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// Processing when adding the gradient to the node on each PV.
|
||||
//If discount_rate is 0, this process is not performed.
|
||||
if (discount_rate != 0)
|
||||
pos_add_grad();
|
||||
|
||||
pos.do_move(m, state[ply++]);
|
||||
|
||||
// Since the value of evaluate in leaf is used, the difference is updated.
|
||||
Eval::NNUE::update_eval(pos);
|
||||
}
|
||||
|
||||
if (illegal_move) {
|
||||
sync_cout << "An illical move was detected... Excluded the position from the learning data..." << sync_endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Since we have reached the end phase of PV, add the slope here.
|
||||
pos_add_grad();
|
||||
|
||||
// rewind the phase
|
||||
for (auto it = pv.rbegin(); it != pv.rend(); ++it)
|
||||
pos.undo_move(*it);
|
||||
|
||||
#if 0
|
||||
// When adding the gradient to the root phase
|
||||
shallow_value = (rootColor == pos.side_to_move()) ? Eval::evaluate(pos) : -Eval::evaluate(pos);
|
||||
dj_dw = calc_grad(deep_value, shallow_value, ps);
|
||||
Eval::add_grad(pos, rootColor, dj_dw, without_kpp);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1303,7 +1161,6 @@ namespace Learner
|
||||
static int dir_number = 0;
|
||||
const std::string dir_name = std::to_string(dir_number++);
|
||||
Eval::save_eval(dir_name);
|
||||
#if defined(EVAL_NNUE)
|
||||
if (newbob_decay != 1.0 && latest_loss_count > 0) {
|
||||
static int trials = newbob_num_trials;
|
||||
const double latest_loss = latest_loss_sum / latest_loss_count;
|
||||
@@ -1338,7 +1195,6 @@ namespace Learner
|
||||
return true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@@ -1652,23 +1508,15 @@ namespace Learner
|
||||
ELMO_LAMBDA_LIMIT = 32000;
|
||||
#endif
|
||||
|
||||
// Discount rate. If this is set to a value other than 0, the slope will be added even at other than the PV termination. (At that time, apply this discount rate)
|
||||
double discount_rate = 0;
|
||||
|
||||
// if (gamePly <rand(reduction_gameply)) continue;
|
||||
// An option to exclude the early stage from the learning target moderately like
|
||||
// If set to 1, rand(1)==0, so nothing is excluded.
|
||||
int reduction_gameply = 1;
|
||||
|
||||
// Optional item that does not let you learn KK/KKP/KPP/KPPP
|
||||
array<bool, 4> freeze = {};
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
uint64_t nn_batch_size = 1000;
|
||||
double newbob_decay = 1.0;
|
||||
int newbob_num_trials = 2;
|
||||
string nn_options;
|
||||
#endif
|
||||
|
||||
uint64_t eval_save_interval = LEARN_EVAL_SAVE_INTERVAL;
|
||||
uint64_t loss_output_interval = 0;
|
||||
@@ -1718,24 +1566,9 @@ namespace Learner
|
||||
// Accept also the old option name.
|
||||
else if (option == "use_hash_in_training" || option == "skip_duplicated_positions_in_training") is >> skip_duplicated_positions_in_training;
|
||||
else if (option == "winning_probability_coefficient") is >> winning_probability_coefficient;
|
||||
// Discount rate
|
||||
else if (option == "discount_rate") is >> discount_rate;
|
||||
// Using WDL with win rate model instead of sigmoid
|
||||
else if (option == "use_wdl") is >> use_wdl;
|
||||
|
||||
// No learning of KK/KKP/KPP/KPPP.
|
||||
else if (option == "freeze_kk") is >> freeze[0];
|
||||
else if (option == "freeze_kkp") is >> freeze[1];
|
||||
else if (option == "freeze_kpp") is >> freeze[2];
|
||||
|
||||
#if defined(EVAL_KPPT) || defined(EVAL_KPP_KKPT) || defined(EVAL_KPP_KKPT_FV_VAR) || defined(EVAL_NABLA)
|
||||
|
||||
#elif defined(EVAL_KPPPT) || defined(EVAL_KPPP_KKPT) || defined(EVAL_HELICES)
|
||||
else if (option == "freeze_kppp") is >> freeze[3];
|
||||
#elif defined(EVAL_KKPP_KKPT) || defined(EVAL_KKPPT)
|
||||
else if (option == "freeze_kkpp") is >> freeze[3];
|
||||
#endif
|
||||
|
||||
#if defined (LOSS_FUNCTION_IS_ELMO_METHOD)
|
||||
// LAMBDA
|
||||
else if (option == "lambda") is >> ELMO_LAMBDA;
|
||||
@@ -1756,12 +1589,11 @@ namespace Learner
|
||||
else if (option == "save_only_once") save_only_once = true;
|
||||
else if (option == "no_shuffle") no_shuffle = true;
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
else if (option == "nn_batch_size") is >> nn_batch_size;
|
||||
else if (option == "newbob_decay") is >> newbob_decay;
|
||||
else if (option == "newbob_num_trials") is >> newbob_num_trials;
|
||||
else if (option == "nn_options") is >> nn_options;
|
||||
#endif
|
||||
|
||||
else if (option == "eval_save_interval") is >> eval_save_interval;
|
||||
else if (option == "loss_output_interval") is >> loss_output_interval;
|
||||
else if (option == "mirror_percentage") is >> mirror_percentage;
|
||||
@@ -1924,21 +1756,15 @@ namespace Learner
|
||||
for (auto it = filenames.rbegin(); it != filenames.rend(); ++it)
|
||||
sr.filenames.push_back(Path::Combine(base_dir, *it));
|
||||
|
||||
#if !defined(EVAL_NNUE)
|
||||
cout << "Gradient Method : " << LEARN_UPDATE << endl;
|
||||
#endif
|
||||
cout << "Loss Function : " << LOSS_FUNCTION << endl;
|
||||
cout << "mini-batch size : " << mini_batch_size << endl;
|
||||
#if defined(EVAL_NNUE)
|
||||
cout << "nn_batch_size : " << nn_batch_size << endl;
|
||||
cout << "nn_options : " << nn_options << endl;
|
||||
#endif
|
||||
cout << "learning rate : " << eta1 << " , " << eta2 << " , " << eta3 << endl;
|
||||
cout << "eta_epoch : " << eta1_epoch << " , " << eta2_epoch << endl;
|
||||
cout << "use_draw_games_in_training : " << use_draw_games_in_training << endl;
|
||||
cout << "use_draw_games_in_validation : " << use_draw_games_in_validation << endl;
|
||||
cout << "skip_duplicated_positions_in_training : " << skip_duplicated_positions_in_training << endl;
|
||||
#if defined(EVAL_NNUE)
|
||||
if (newbob_decay != 1.0) {
|
||||
cout << "scheduling : newbob with decay = " << newbob_decay
|
||||
<< ", " << newbob_num_trials << " trials" << endl;
|
||||
@@ -1946,8 +1772,6 @@ namespace Learner
|
||||
else {
|
||||
cout << "scheduling : default" << endl;
|
||||
}
|
||||
#endif
|
||||
cout << "discount rate : " << discount_rate << endl;
|
||||
|
||||
// If reduction_gameply is set to 0, rand(0) will be divided by 0, so correct it to 1.
|
||||
reduction_gameply = max(reduction_gameply, 1);
|
||||
@@ -1962,14 +1786,6 @@ namespace Learner
|
||||
cout << "eval_save_interval : " << eval_save_interval << " sfens" << endl;
|
||||
cout << "loss_output_interval: " << loss_output_interval << " sfens" << endl;
|
||||
|
||||
#if defined(EVAL_KPPT) || defined(EVAL_KPP_KKPT) || defined(EVAL_KPP_KKPT_FV_VAR) || defined(EVAL_NABLA)
|
||||
cout << "freeze_kk/kkp/kpp : " << freeze[0] << " , " << freeze[1] << " , " << freeze[2] << endl;
|
||||
#elif defined(EVAL_KPPPT) || defined(EVAL_KPPP_KKPT) || defined(EVAL_HELICES)
|
||||
cout << "freeze_kk/kkp/kpp/kppp : " << freeze[0] << " , " << freeze[1] << " , " << freeze[2] << " , " << freeze[3] << endl;
|
||||
#elif defined(EVAL_KKPP_KKPT) || defined(EVAL_KKPPT)
|
||||
cout << "freeze_kk/kkp/kpp/kkpp : " << freeze[0] << " , " << freeze[1] << " , " << freeze[2] << " , " << freeze[3] << endl;
|
||||
#endif
|
||||
|
||||
// -----------------------------------
|
||||
// various initialization
|
||||
// -----------------------------------
|
||||
@@ -1979,12 +1795,6 @@ namespace Learner
|
||||
// Read evaluation function parameters
|
||||
Eval::init_NNUE();
|
||||
|
||||
#if !defined(EVAL_NNUE)
|
||||
cout << "init_grad.." << endl;
|
||||
|
||||
// Initialize gradient array of merit function parameters
|
||||
Eval::init_grad(eta1, eta1_epoch, eta2, eta2_epoch, eta3);
|
||||
#else
|
||||
cout << "init_training.." << endl;
|
||||
Eval::NNUE::InitializeTraining(eta1, eta1_epoch, eta2, eta2_epoch, eta3);
|
||||
Eval::NNUE::SetBatchSize(nn_batch_size);
|
||||
@@ -1992,34 +1802,17 @@ namespace Learner
|
||||
if (newbob_decay != 1.0 && !Options["SkipLoadingEval"]) {
|
||||
learn_think.best_nn_directory = std::string(Options["EvalDir"]);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
// A test to give a gradient of 1.0 to the initial stage of Hirate.
|
||||
pos.set_hirate();
|
||||
cout << Eval::evaluate(pos) << endl;
|
||||
//Eval::print_eval_stat(pos);
|
||||
Eval::add_grad(pos, BLACK, 32.0, false);
|
||||
Eval::update_weights(1);
|
||||
pos.state()->sum.p[2][0] = VALUE_NOT_EVALUATED;
|
||||
cout << Eval::evaluate(pos) << endl;
|
||||
//Eval::print_eval_stat(pos);
|
||||
#endif
|
||||
|
||||
cout << "init done." << endl;
|
||||
|
||||
// Reflect other option settings.
|
||||
learn_think.discount_rate = discount_rate;
|
||||
learn_think.eval_limit = eval_limit;
|
||||
learn_think.save_only_once = save_only_once;
|
||||
learn_think.sr.no_shuffle = no_shuffle;
|
||||
learn_think.freeze = freeze;
|
||||
learn_think.reduction_gameply = reduction_gameply;
|
||||
#if defined(EVAL_NNUE)
|
||||
learn_think.newbob_scale = 1.0;
|
||||
learn_think.newbob_decay = newbob_decay;
|
||||
learn_think.newbob_num_trials = newbob_num_trials;
|
||||
#endif
|
||||
learn_think.eval_save_interval = eval_save_interval;
|
||||
learn_think.loss_output_interval = loss_output_interval;
|
||||
learn_think.mirror_percentage = mirror_percentage;
|
||||
@@ -2040,7 +1833,6 @@ namespace Learner
|
||||
|
||||
// Calculate rmse once at this point (timing of 0 sfen)
|
||||
// sr.calc_rmse();
|
||||
#if defined(EVAL_NNUE)
|
||||
if (newbob_decay != 1.0) {
|
||||
learn_think.calc_loss(0, -1);
|
||||
learn_think.best_loss = learn_think.latest_loss_sum / learn_think.latest_loss_count;
|
||||
@@ -2048,7 +1840,6 @@ namespace Learner
|
||||
learn_think.latest_loss_count = 0;
|
||||
cout << "initial loss: " << learn_think.best_loss << endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
// -----------------------------------
|
||||
// start learning evaluation function parameters
|
||||
|
||||
@@ -6,11 +6,6 @@
|
||||
#include "learn.h"
|
||||
#if defined (EVAL_LEARN)
|
||||
#include <array>
|
||||
|
||||
#if defined(SGD_UPDATE) || defined(USE_KPPP_MIRROR_WRITE)
|
||||
#include "../misc.h" // PRNG , my_insertion_sort
|
||||
#endif
|
||||
|
||||
#include <cmath> // std::sqrt()
|
||||
|
||||
namespace EvalLearningTools
|
||||
|
||||
@@ -142,7 +142,6 @@ namespace Eval::NNUE {
|
||||
if (!Detail::ReadParameters(stream, network)) return false;
|
||||
return stream && stream.peek() == std::ios::traits_type::eof();
|
||||
}
|
||||
|
||||
// write evaluation function parameters
|
||||
bool WriteParameters(std::ostream& stream) {
|
||||
if (!WriteHeader(stream, kHashValue, GetArchitectureString())) return false;
|
||||
@@ -150,32 +149,16 @@ namespace Eval::NNUE {
|
||||
if (!Detail::WriteParameters(stream, network)) return false;
|
||||
return !stream.fail();
|
||||
}
|
||||
|
||||
// Proceed with the difference calculation if possible
|
||||
static void UpdateAccumulatorIfPossible(const Position& pos) {
|
||||
|
||||
feature_transformer->UpdateAccumulatorIfPossible(pos);
|
||||
}
|
||||
|
||||
// Calculate the evaluation value
|
||||
static Value ComputeScore(const Position& pos, bool refresh) {
|
||||
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
if (!refresh && accumulator.computed_score) {
|
||||
return accumulator.score;
|
||||
}
|
||||
// Evaluation function. Perform differential calculation.
|
||||
Value evaluate(const Position& pos) {
|
||||
|
||||
alignas(kCacheLineSize) TransformedFeatureType
|
||||
transformed_features[FeatureTransformer::kBufferSize];
|
||||
feature_transformer->Transform(pos, transformed_features, refresh);
|
||||
feature_transformer->Transform(pos, transformed_features);
|
||||
alignas(kCacheLineSize) char buffer[Network::kBufferSize];
|
||||
const auto output = network->Propagate(transformed_features, buffer);
|
||||
|
||||
auto score = static_cast<Value>(output[0] / FV_SCALE);
|
||||
|
||||
accumulator.score = score;
|
||||
accumulator.computed_score = true;
|
||||
return accumulator.score;
|
||||
return static_cast<Value>(output[0] / FV_SCALE);
|
||||
}
|
||||
|
||||
// Load eval, from a file stream or a memory stream
|
||||
@@ -191,19 +174,4 @@ namespace Eval::NNUE {
|
||||
return ReadParameters(stream);
|
||||
}
|
||||
|
||||
// Evaluation function. Perform differential calculation.
|
||||
Value evaluate(const Position& pos) {
|
||||
return ComputeScore(pos, false);
|
||||
}
|
||||
|
||||
// Evaluation function. Perform full calculation.
|
||||
Value compute_eval(const Position& pos) {
|
||||
return ComputeScore(pos, true);
|
||||
}
|
||||
|
||||
// Proceed with the difference calculation if possible
|
||||
void update_eval(const Position& pos) {
|
||||
UpdateAccumulatorIfPossible(pos);
|
||||
}
|
||||
|
||||
} // namespace Eval::NNUE
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Code for learning NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include <random>
|
||||
#include <fstream>
|
||||
@@ -115,7 +115,6 @@ void RestoreParameters(const std::string& dir_name) {
|
||||
std::ifstream stream(file_name, std::ios::binary);
|
||||
bool result = ReadParameters(stream);
|
||||
assert(result);
|
||||
|
||||
SendMessages({{"reset"}});
|
||||
}
|
||||
|
||||
@@ -216,9 +215,8 @@ void save_eval(std::string dir_name) {
|
||||
|
||||
const std::string file_name = Path::Combine(eval_dir, NNUE::savedfileName);
|
||||
std::ofstream stream(file_name, std::ios::binary);
|
||||
const bool result = NNUE::WriteParameters(stream);
|
||||
bool result = NNUE::WriteParameters(stream);
|
||||
assert(result);
|
||||
|
||||
std::cout << "save_eval() finished. folder = " << eval_dir << std::endl;
|
||||
}
|
||||
|
||||
@@ -229,4 +227,4 @@ double get_eta() {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _EVALUATE_NNUE_LEARNER_H_
|
||||
#define _EVALUATE_NNUE_LEARNER_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../learn/learn.h"
|
||||
|
||||
@@ -41,6 +41,6 @@ void CheckHealth();
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
//Definition of input feature quantity K of NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "castling_right.h"
|
||||
#include "index_list.h"
|
||||
|
||||
@@ -28,7 +26,7 @@ namespace Eval {
|
||||
& ((castling_rights >> 2) & 3);
|
||||
}
|
||||
|
||||
for (int i = 0; i <kDimensions; ++i) {
|
||||
for (unsigned int i = 0; i <kDimensions; ++i) {
|
||||
if (relative_castling_rights & (i << 1)) {
|
||||
active->push_back(i);
|
||||
}
|
||||
@@ -56,7 +54,7 @@ namespace Eval {
|
||||
& ((current_castling_rights >> 2) & 3);
|
||||
}
|
||||
|
||||
for (int i = 0; i < kDimensions; ++i) {
|
||||
for (unsigned int i = 0; i < kDimensions; ++i) {
|
||||
if ((relative_previous_castling_rights & (i << 1)) &&
|
||||
(relative_current_castling_rights & (i << 1)) == 0) {
|
||||
removed->push_back(i);
|
||||
@@ -69,5 +67,3 @@ namespace Eval {
|
||||
} // namespace NNUE
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_FEATURES_CASTLING_RIGHT_H_
|
||||
#define _NNUE_FEATURES_CASTLING_RIGHT_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../evaluate.h"
|
||||
#include "features_common.h"
|
||||
|
||||
@@ -43,6 +41,4 @@ namespace Eval {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
//Definition of input feature quantity K of NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "enpassant.h"
|
||||
#include "index_list.h"
|
||||
|
||||
@@ -43,5 +41,3 @@ namespace Eval {
|
||||
} // namespace NNUE
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_FEATURES_ENPASSANT_H_
|
||||
#define _NNUE_FEATURES_ENPASSANT_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../evaluate.h"
|
||||
#include "features_common.h"
|
||||
|
||||
@@ -43,6 +41,4 @@ namespace Eval {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
//Definition of input features HalfRelativeKP of NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "half_relative_kp.h"
|
||||
#include "index_list.h"
|
||||
|
||||
@@ -74,5 +72,3 @@ template class HalfRelativeKP<Side::kEnemy>;
|
||||
} // namespace NNUE
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_FEATURES_HALF_RELATIVE_KP_H_
|
||||
#define _NNUE_FEATURES_HALF_RELATIVE_KP_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../evaluate.h"
|
||||
#include "features_common.h"
|
||||
|
||||
@@ -60,6 +58,4 @@ class HalfRelativeKP {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
//Definition of input feature quantity K of NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "k.h"
|
||||
#include "index_list.h"
|
||||
|
||||
@@ -54,5 +52,3 @@ void K::AppendChangedIndices(
|
||||
} // namespace NNUE
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_FEATURES_K_H_
|
||||
#define _NNUE_FEATURES_K_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../evaluate.h"
|
||||
#include "features_common.h"
|
||||
|
||||
@@ -47,6 +45,4 @@ private:
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
//Definition of input feature P of NNUE evaluation function
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "p.h"
|
||||
#include "index_list.h"
|
||||
|
||||
@@ -52,5 +50,3 @@ void P::AppendChangedIndices(
|
||||
} // namespace NNUE
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_FEATURES_P_H_
|
||||
#define _NNUE_FEATURES_P_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../evaluate.h"
|
||||
#include "features_common.h"
|
||||
|
||||
@@ -47,6 +45,4 @@ class P {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_LAYERS_SUM_H_
|
||||
#define _NNUE_LAYERS_SUM_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../nnue_common.h"
|
||||
|
||||
namespace Eval {
|
||||
@@ -158,6 +156,4 @@ class Sum<PreviousLayer> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -29,9 +29,7 @@ namespace Eval::NNUE {
|
||||
struct alignas(kCacheLineSize) Accumulator {
|
||||
std::int16_t
|
||||
accumulation[2][kRefreshTriggers.size()][kTransformedFeatureDimensions];
|
||||
Value score;
|
||||
bool computed_accumulation;
|
||||
bool computed_score;
|
||||
};
|
||||
|
||||
} // namespace Eval::NNUE
|
||||
|
||||
@@ -50,6 +50,7 @@ namespace Eval::NNUE {
|
||||
|
||||
// Hash value embedded in the evaluation file
|
||||
static constexpr std::uint32_t GetHashValue() {
|
||||
|
||||
return RawFeatures::kHashValue ^ kOutputDimensions;
|
||||
}
|
||||
|
||||
@@ -62,6 +63,7 @@ namespace Eval::NNUE {
|
||||
|
||||
// Read network parameters
|
||||
bool ReadParameters(std::istream& stream) {
|
||||
|
||||
for (std::size_t i = 0; i < kHalfDimensions; ++i)
|
||||
biases_[i] = read_little_endian<BiasType>(stream);
|
||||
for (std::size_t i = 0; i < kHalfDimensions * kInputDimensions; ++i)
|
||||
@@ -80,23 +82,26 @@ namespace Eval::NNUE {
|
||||
|
||||
// Proceed with the difference calculation if possible
|
||||
bool UpdateAccumulatorIfPossible(const Position& pos) const {
|
||||
|
||||
const auto now = pos.state();
|
||||
if (now->accumulator.computed_accumulation) {
|
||||
if (now->accumulator.computed_accumulation)
|
||||
return true;
|
||||
}
|
||||
|
||||
const auto prev = now->previous;
|
||||
if (prev && prev->accumulator.computed_accumulation) {
|
||||
UpdateAccumulator(pos);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Convert input features
|
||||
void Transform(const Position& pos, OutputType* output, bool refresh) const {
|
||||
if (refresh || !UpdateAccumulatorIfPossible(pos)) {
|
||||
void Transform(const Position& pos, OutputType* output) const {
|
||||
|
||||
if (!UpdateAccumulatorIfPossible(pos))
|
||||
RefreshAccumulator(pos);
|
||||
}
|
||||
|
||||
const auto& accumulation = pos.state()->accumulator.accumulation;
|
||||
|
||||
#if defined(USE_AVX2)
|
||||
@@ -193,6 +198,7 @@ namespace Eval::NNUE {
|
||||
private:
|
||||
// Calculate cumulative value without using difference calculation
|
||||
void RefreshAccumulator(const Position& pos) const {
|
||||
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
IndexType i = 0;
|
||||
Features::IndexList active_indices[2];
|
||||
@@ -232,9 +238,8 @@ namespace Eval::NNUE {
|
||||
&accumulator.accumulation[perspective][i][0]);
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto accumulation = reinterpret_cast<int16x8_t*>(
|
||||
@@ -256,11 +261,11 @@ namespace Eval::NNUE {
|
||||
#endif
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
}
|
||||
|
||||
// Calculate cumulative value using difference calculation
|
||||
void UpdateAccumulator(const Position& pos) const {
|
||||
|
||||
const auto prev_accumulator = pos.state()->previous->accumulator;
|
||||
auto& accumulator = pos.state()->accumulator;
|
||||
IndexType i = 0;
|
||||
@@ -304,33 +309,27 @@ namespace Eval::NNUE {
|
||||
|
||||
#if defined(USE_AVX2)
|
||||
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm256_sub_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_SSE2)
|
||||
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_sub_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_MMX)
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_sub_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = vsubq_s16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#else
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j) {
|
||||
accumulator.accumulation[perspective][i][j] -=
|
||||
weights_[offset + j];
|
||||
}
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j)
|
||||
accumulator.accumulation[perspective][i][j] -= weights_[offset + j];
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -341,33 +340,27 @@ namespace Eval::NNUE {
|
||||
|
||||
#if defined(USE_AVX2)
|
||||
auto column = reinterpret_cast<const __m256i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_SSE2)
|
||||
auto column = reinterpret_cast<const __m128i*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_epi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_MMX)
|
||||
auto column = reinterpret_cast<const __m64*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = _mm_add_pi16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#elif defined(USE_NEON)
|
||||
auto column = reinterpret_cast<const int16x8_t*>(&weights_[offset]);
|
||||
for (IndexType j = 0; j < kNumChunks; ++j) {
|
||||
for (IndexType j = 0; j < kNumChunks; ++j)
|
||||
accumulation[j] = vaddq_s16(accumulation[j], column[j]);
|
||||
}
|
||||
|
||||
#else
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j) {
|
||||
accumulator.accumulation[perspective][i][j] +=
|
||||
weights_[offset + j];
|
||||
}
|
||||
for (IndexType j = 0; j < kHalfDimensions; ++j)
|
||||
accumulator.accumulation[perspective][i][j] += weights_[offset + j];
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -378,7 +371,6 @@ namespace Eval::NNUE {
|
||||
#endif
|
||||
|
||||
accumulator.computed_accumulation = true;
|
||||
accumulator.computed_score = false;
|
||||
}
|
||||
|
||||
using BiasType = std::int16_t;
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// USI extended command for NNUE evaluation function
|
||||
|
||||
#if defined(ENABLE_TEST_CMD) && defined(EVAL_NNUE)
|
||||
#if defined(ENABLE_TEST_CMD)
|
||||
|
||||
#include "../thread.h"
|
||||
#include "../uci.h"
|
||||
@@ -198,4 +198,4 @@ void TestCommand(Position& pos, std::istream& stream) {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(ENABLE_TEST_CMD) && defined(EVAL_NNUE)
|
||||
#endif // defined(ENABLE_TEST_CMD)
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TEST_COMMAND_H_
|
||||
#define _NNUE_TEST_COMMAND_H_
|
||||
|
||||
#if defined(ENABLE_TEST_CMD) && defined(EVAL_NNUE)
|
||||
#if defined(ENABLE_TEST_CMD)
|
||||
|
||||
namespace Eval {
|
||||
|
||||
@@ -16,6 +16,6 @@ void TestCommand(Position& pos, std::istream& stream);
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(ENABLE_TEST_CMD) && defined(EVAL_NNUE)
|
||||
#endif // defined(ENABLE_TEST_CMD)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_TRAINER_FEATURES_FACTORIZER_H_
|
||||
#define _NNUE_TRAINER_FEATURES_FACTORIZER_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../nnue_common.h"
|
||||
#include "../trainer.h"
|
||||
|
||||
@@ -105,6 +103,4 @@ constexpr std::size_t GetArrayLength(const T (&/*array*/)[N]) {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_TRAINER_FEATURES_FACTORIZER_FEATURE_SET_H_
|
||||
#define _NNUE_TRAINER_FEATURES_FACTORIZER_FEATURE_SET_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../features/feature_set.h"
|
||||
#include "factorizer.h"
|
||||
|
||||
@@ -99,6 +97,4 @@ public:
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#ifndef _NNUE_TRAINER_FEATURES_FACTORIZER_HALF_KP_H_
|
||||
#define _NNUE_TRAINER_FEATURES_FACTORIZER_HALF_KP_H_
|
||||
|
||||
#if defined(EVAL_NNUE)
|
||||
|
||||
#include "../../features/half_kp.h"
|
||||
#include "../../features/p.h"
|
||||
#include "../../features/half_relative_kp.h"
|
||||
@@ -98,6 +96,4 @@ constexpr FeatureProperties Factorizer<HalfKP<AssociatedKing>>::kProperties[];
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_NNUE)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_H_
|
||||
#define _NNUE_TRAINER_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../nnue_common.h"
|
||||
#include "../features/index_list.h"
|
||||
@@ -70,8 +70,8 @@ struct Example {
|
||||
|
||||
// Message used for setting hyperparameters
|
||||
struct Message {
|
||||
Message(const std::string& name, const std::string& value = ""):
|
||||
name(name), value(value), num_peekers(0), num_receivers(0) {}
|
||||
Message(const std::string& in_name, const std::string& in_value = ""):
|
||||
name(in_name), value(in_value), num_peekers(0), num_receivers(0) {}
|
||||
const std::string name;
|
||||
const std::string value;
|
||||
std::uint32_t num_peekers;
|
||||
@@ -120,6 +120,6 @@ std::shared_ptr<T> MakeAlignedSharedPtr(ArgumentTypes&&... arguments) {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_AFFINE_TRANSFORM_H_
|
||||
#define _NNUE_TRAINER_AFFINE_TRANSFORM_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../../learn/learn.h"
|
||||
#include "../layers/affine_transform.h"
|
||||
@@ -296,6 +296,6 @@ class Trainer<Layers::AffineTransform<PreviousLayer, OutputDimensions>> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_CLIPPED_RELU_H_
|
||||
#define _NNUE_TRAINER_CLIPPED_RELU_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../../learn/learn.h"
|
||||
#include "../layers/clipped_relu.h"
|
||||
@@ -137,6 +137,6 @@ class Trainer<Layers::ClippedReLU<PreviousLayer>> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_FEATURE_TRANSFORMER_H_
|
||||
#define _NNUE_TRAINER_FEATURE_TRANSFORMER_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../../learn/learn.h"
|
||||
#include "../nnue_feature_transformer.h"
|
||||
@@ -372,6 +372,6 @@ class Trainer<FeatureTransformer> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_INPUT_SLICE_H_
|
||||
#define _NNUE_TRAINER_INPUT_SLICE_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../../learn/learn.h"
|
||||
#include "../layers/input_slice.h"
|
||||
@@ -246,6 +246,6 @@ class Trainer<Layers::InputSlice<OutputDimensions, Offset>> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#ifndef _NNUE_TRAINER_SUM_H_
|
||||
#define _NNUE_TRAINER_SUM_H_
|
||||
|
||||
#if defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#if defined(EVAL_LEARN)
|
||||
|
||||
#include "../../learn/learn.h"
|
||||
#include "../layers/sum.h"
|
||||
@@ -185,6 +185,6 @@ class Trainer<Layers::Sum<PreviousLayer>> {
|
||||
|
||||
} // namespace Eval
|
||||
|
||||
#endif // defined(EVAL_LEARN) && defined(EVAL_NNUE)
|
||||
#endif // defined(EVAL_LEARN)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -704,7 +704,6 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
|
||||
|
||||
// Used by NNUE
|
||||
st->accumulator.computed_accumulation = false;
|
||||
st->accumulator.computed_score = false;
|
||||
auto& dp = st->dirtyPiece;
|
||||
dp.dirty_num = 1;
|
||||
|
||||
@@ -1000,7 +999,6 @@ void Position::do_null_move(StateInfo& newSt) {
|
||||
if (Eval::useNNUE)
|
||||
{
|
||||
std::memcpy(&newSt, st, sizeof(StateInfo));
|
||||
st->accumulator.computed_score = false;
|
||||
}
|
||||
else
|
||||
std::memcpy(&newSt, st, offsetof(StateInfo, accumulator));
|
||||
|
||||
@@ -597,7 +597,7 @@ namespace {
|
||||
Move ttMove, move, excludedMove, bestMove;
|
||||
Depth extension, newDepth;
|
||||
Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
|
||||
bool ttHit, formerPv, givesCheck, improving, didLMR, priorCapture;
|
||||
bool formerPv, givesCheck, improving, didLMR, priorCapture;
|
||||
bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
|
||||
ttCapture, singularQuietLMR;
|
||||
Piece movedPiece;
|
||||
@@ -664,12 +664,12 @@ namespace {
|
||||
// position key in case of an excluded move.
|
||||
excludedMove = ss->excludedMove;
|
||||
posKey = excludedMove == MOVE_NONE ? pos.key() : pos.key() ^ make_key(excludedMove);
|
||||
tte = TT.probe(posKey, ttHit);
|
||||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
||||
tte = TT.probe(posKey, ss->ttHit);
|
||||
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
||||
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
|
||||
: ttHit ? tte->move() : MOVE_NONE;
|
||||
: ss->ttHit ? tte->move() : MOVE_NONE;
|
||||
if (!excludedMove)
|
||||
ss->ttPv = PvNode || (ttHit && tte->is_pv());
|
||||
ss->ttPv = PvNode || (ss->ttHit && tte->is_pv());
|
||||
formerPv = ss->ttPv && !PvNode;
|
||||
|
||||
if ( ss->ttPv
|
||||
@@ -681,11 +681,11 @@ namespace {
|
||||
|
||||
// thisThread->ttHitAverage can be used to approximate the running average of ttHit
|
||||
thisThread->ttHitAverage = (TtHitAverageWindow - 1) * thisThread->ttHitAverage / TtHitAverageWindow
|
||||
+ TtHitAverageResolution * ttHit;
|
||||
+ TtHitAverageResolution * ss->ttHit;
|
||||
|
||||
// At non-PV nodes we check for an early TT cutoff
|
||||
if ( !PvNode
|
||||
&& ttHit
|
||||
&& ss->ttHit
|
||||
&& tte->depth() >= depth
|
||||
&& ttValue != VALUE_NONE // Possible in case of TT access race
|
||||
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
||||
@@ -778,7 +778,7 @@ namespace {
|
||||
improving = false;
|
||||
goto moves_loop;
|
||||
}
|
||||
else if (ttHit)
|
||||
else if (ss->ttHit)
|
||||
{
|
||||
// Never assume anything about values stored in TT
|
||||
ss->staticEval = eval = tte->eval();
|
||||
@@ -882,14 +882,14 @@ namespace {
|
||||
// there and in further interactions with transposition table cutoff depth is set to depth - 3
|
||||
// because probCut search has depth set to depth - 4 but we also do a move before it
|
||||
// so effective depth is equal to depth - 3
|
||||
&& !( ttHit
|
||||
&& !( ss->ttHit
|
||||
&& tte->depth() >= depth - 3
|
||||
&& ttValue != VALUE_NONE
|
||||
&& ttValue < probCutBeta))
|
||||
{
|
||||
// if ttMove is a capture and value from transposition table is good enough produce probCut
|
||||
// cutoff without digging into actual probCut search
|
||||
if ( ttHit
|
||||
if ( ss->ttHit
|
||||
&& tte->depth() >= depth - 3
|
||||
&& ttValue != VALUE_NONE
|
||||
&& ttValue >= probCutBeta
|
||||
@@ -933,7 +933,7 @@ namespace {
|
||||
if (value >= probCutBeta)
|
||||
{
|
||||
// if transposition table doesn't have equal or more deep info write probCut data into it
|
||||
if ( !(ttHit
|
||||
if ( !(ss->ttHit
|
||||
&& tte->depth() >= depth - 3
|
||||
&& ttValue != VALUE_NONE))
|
||||
tte->save(posKey, value_to_tt(value, ss->ply), ttPv,
|
||||
@@ -1018,7 +1018,6 @@ moves_loop: // When in check, search starts from here
|
||||
|
||||
// Step 13. Pruning at shallow depth (~200 Elo)
|
||||
if ( !rootNode
|
||||
&& !(Options["Training"] && PvNode)
|
||||
&& pos.non_pawn_material(us)
|
||||
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
|
||||
{
|
||||
@@ -1173,13 +1172,6 @@ moves_loop: // When in check, search starts from here
|
||||
{
|
||||
Depth r = reduction(improving, depth, moveCount);
|
||||
|
||||
// Decrease reduction at non-check cut nodes for second move at low depths
|
||||
if ( cutNode
|
||||
&& depth <= 10
|
||||
&& moveCount <= 2
|
||||
&& !ss->inCheck)
|
||||
r--;
|
||||
|
||||
// Decrease reduction if the ttHit running average is large
|
||||
if (thisThread->ttHitAverage > 509 * TtHitAverageResolution * TtHitAverageWindow / 1024)
|
||||
r--;
|
||||
@@ -1201,7 +1193,7 @@ moves_loop: // When in check, search starts from here
|
||||
|
||||
// Decrease reduction if ttMove has been singularly extended (~3 Elo)
|
||||
if (singularQuietLMR)
|
||||
r -= 1 + formerPv;
|
||||
r--;
|
||||
|
||||
if (!captureOrPromotion)
|
||||
{
|
||||
@@ -1435,7 +1427,7 @@ moves_loop: // When in check, search starts from here
|
||||
Move ttMove, move, bestMove;
|
||||
Depth ttDepth;
|
||||
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
||||
bool ttHit, pvHit, givesCheck, captureOrPromotion;
|
||||
bool pvHit, givesCheck, captureOrPromotion;
|
||||
int moveCount;
|
||||
|
||||
if (PvNode)
|
||||
@@ -1465,13 +1457,13 @@ moves_loop: // When in check, search starts from here
|
||||
: DEPTH_QS_NO_CHECKS;
|
||||
// Transposition table lookup
|
||||
posKey = pos.key();
|
||||
tte = TT.probe(posKey, ttHit);
|
||||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
||||
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
||||
pvHit = ttHit && tte->is_pv();
|
||||
tte = TT.probe(posKey, ss->ttHit);
|
||||
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
||||
ttMove = ss->ttHit ? tte->move() : MOVE_NONE;
|
||||
pvHit = ss->ttHit && tte->is_pv();
|
||||
|
||||
if ( !PvNode
|
||||
&& ttHit
|
||||
&& ss->ttHit
|
||||
&& tte->depth() >= ttDepth
|
||||
&& ttValue != VALUE_NONE // Only in case of TT access race
|
||||
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
||||
@@ -1486,7 +1478,7 @@ moves_loop: // When in check, search starts from here
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ttHit)
|
||||
if (ss->ttHit)
|
||||
{
|
||||
// Never assume anything about values stored in TT
|
||||
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
|
||||
@@ -1505,7 +1497,7 @@ moves_loop: // When in check, search starts from here
|
||||
// Stand pat. Return immediately if static value is at least beta
|
||||
if (bestValue >= beta)
|
||||
{
|
||||
if (!ttHit)
|
||||
if (!ss->ttHit)
|
||||
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
|
||||
DEPTH_NONE, MOVE_NONE, ss->staticEval);
|
||||
|
||||
@@ -1569,20 +1561,16 @@ moves_loop: // When in check, search starts from here
|
||||
}
|
||||
|
||||
// Do not search moves with negative SEE values
|
||||
if ( !ss->inCheck && !pos.see_ge(move))
|
||||
if ( !ss->inCheck
|
||||
&& !(givesCheck && pos.is_discovery_check_on_king(~pos.side_to_move(), move))
|
||||
&& !pos.see_ge(move))
|
||||
continue;
|
||||
|
||||
// Speculative prefetch as early as possible
|
||||
prefetch(TT.first_entry(pos.key_after(move)));
|
||||
|
||||
// Check for legality just before making the move
|
||||
if (
|
||||
#if defined(EVAL_LEARN)
|
||||
// HACK: pos.piece_on(from_sq(m)) sometimes will be NO_PIECE during machine learning.
|
||||
!pos.pseudo_legal(move) ||
|
||||
#endif // EVAL_LEARN
|
||||
!pos.legal(move)
|
||||
)
|
||||
if (!pos.legal(move))
|
||||
{
|
||||
moveCount--;
|
||||
continue;
|
||||
@@ -1727,8 +1715,8 @@ moves_loop: // When in check, search starts from here
|
||||
else
|
||||
captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;
|
||||
|
||||
// Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted
|
||||
if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0]))
|
||||
// Extra penalty for a quiet early move that was not a TT move or main killer move in previous ply when it gets refuted
|
||||
if ( ((ss-1)->moveCount == 1 + (ss-1)->ttHit || ((ss-1)->currentMove == (ss-1)->killers[0]))
|
||||
&& !pos.captured_piece())
|
||||
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);
|
||||
|
||||
@@ -2276,7 +2264,7 @@ namespace Learner
|
||||
}
|
||||
|
||||
// Pass PV_is(ok) to eliminate this PV, there may be NULL_MOVE in the middle.
|
||||
// ¨ PV should not be NULL_MOVE because it is PV
|
||||
// ?<3F>L PV should not be NULL_MOVE because it is PV
|
||||
// MOVE_WIN has never been thrust. (For now)
|
||||
for (Move move : rootMoves[0].pv)
|
||||
{
|
||||
|
||||
@@ -49,6 +49,7 @@ struct Stack {
|
||||
int moveCount;
|
||||
bool inCheck;
|
||||
bool ttPv;
|
||||
bool ttHit;
|
||||
};
|
||||
|
||||
|
||||
|
||||
@@ -223,7 +223,9 @@ public:
|
||||
|
||||
*mapping = statbuf.st_size;
|
||||
*baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
|
||||
#if defined(MADV_RANDOM)
|
||||
madvise(*baseAddress, statbuf.st_size, MADV_RANDOM);
|
||||
#endif
|
||||
::close(fd);
|
||||
|
||||
if (*baseAddress == MAP_FAILED)
|
||||
|
||||
@@ -115,6 +115,7 @@ void TranspositionTable::clear() {
|
||||
/// TTEntry t2 if its replace value is greater than that of t2.
|
||||
|
||||
TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
|
||||
|
||||
if (Options["Training"]) {
|
||||
return found = false, first_entry(0);
|
||||
}
|
||||
|
||||
14
src/uci.cpp
14
src/uci.cpp
@@ -32,7 +32,7 @@
|
||||
#include "uci.h"
|
||||
#include "syzygy/tbprobe.h"
|
||||
|
||||
#if defined(EVAL_NNUE) && defined(ENABLE_TEST_CMD)
|
||||
#if defined(ENABLE_TEST_CMD)
|
||||
#include "nnue/nnue_test_command.h"
|
||||
#endif
|
||||
|
||||
@@ -53,10 +53,6 @@ namespace Learner
|
||||
// Learning from the generated game record
|
||||
void learn(Position& pos, istringstream& is);
|
||||
|
||||
#if defined(GENSFEN2019)
|
||||
// Automatic generation command of teacher phase under development
|
||||
void gen_sfen2019(Position& pos, istringstream& is);
|
||||
#endif
|
||||
|
||||
// A pair of reader and evaluation value. Returned by Learner::search(),Learner::qsearch().
|
||||
typedef std::pair<Value, std::vector<Move> > ValueAndPV;
|
||||
@@ -67,7 +63,7 @@ namespace Learner
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(EVAL_NNUE) && defined(ENABLE_TEST_CMD)
|
||||
#if defined(ENABLE_TEST_CMD)
|
||||
void test_cmd(Position& pos, istringstream& is)
|
||||
{
|
||||
// Initialize as it may be searched.
|
||||
@@ -363,17 +359,13 @@ void UCI::loop(int argc, char* argv[]) {
|
||||
else if (token == "gensfen") Learner::gen_sfen(pos, is);
|
||||
else if (token == "learn") Learner::learn(pos, is);
|
||||
|
||||
#if defined (GENSFEN2019)
|
||||
// Command to generate teacher phase under development
|
||||
else if (token == "gensfen2019") Learner::gen_sfen2019(pos, is);
|
||||
#endif
|
||||
// Command to call qsearch(),search() directly for testing
|
||||
else if (token == "qsearch") qsearch_cmd(pos);
|
||||
else if (token == "search") search_cmd(pos, is);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(EVAL_NNUE) && defined(ENABLE_TEST_CMD)
|
||||
#if defined(ENABLE_TEST_CMD)
|
||||
// test command
|
||||
else if (token == "test") test_cmd(pos, is);
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user