Cleanup layers.

This commit is contained in:
Tomasz Sobczyk
2020-10-14 20:55:35 +02:00
committed by nodchip
parent 0d4c3014ca
commit 3041adb080
4 changed files with 616 additions and 573 deletions

View File

@@ -1,19 +1,19 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer AffineTransform of NNUE evaluation function
@@ -21,267 +21,290 @@
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#include <iostream>
#include "../nnue_common.h"
#include "nnue/nnue_common.h"
#include <string>
#include <type_traits>
#include <cstdint>
namespace Eval::NNUE::Layers {
// Affine transformation layer
template <typename PreviousLayer, IndexType OutputDimensions>
class AffineTransform {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::int32_t;
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
// Affine transformation layer
template <typename PreviousLayer, IndexType OutputDimensions>
class AffineTransform {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType kPaddedInputDimensions =
CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
using OutputType = std::int32_t;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xCC03DAE4u;
hash_value += kOutputDimensions;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
}
static constexpr IndexType kOutputDimensions = OutputDimensions;
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "AffineTransform[" +
std::to_string(kOutputDimensions) + "<-" +
std::to_string(kInputDimensions) + "](" +
PreviousLayer::GetStructureString() + ")";
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
if (!previous_layer_.ReadParameters(stream)) return false;
for (std::size_t i = 0; i < kOutputDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
weights_[i] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
static constexpr IndexType kPaddedInputDimensions =
CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
// write parameters
bool WriteParameters(std::ostream& stream) const {
if (!previous_layer_.WriteParameters(stream)) return false;
stream.write(reinterpret_cast<const char*>(biases_),
kOutputDimensions * sizeof(BiasType));
stream.write(reinterpret_cast<const char*>(weights_),
kOutputDimensions * kPaddedInputDimensions *
sizeof(WeightType));
return !stream.fail();
}
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
const auto input_vector = reinterpret_cast<const __m512i*>(input);
#if !defined(USE_VNNI)
const __m512i kOnes = _mm512_set1_epi16(1);
#endif
#elif defined(USE_AVX2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const __m256i*>(input);
#if !defined(USE_VNNI)
const __m256i kOnes = _mm256_set1_epi16(1);
#endif
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
#ifndef USE_SSSE3
const __m128i kZeros = _mm_setzero_si128();
#else
const __m128i kOnes = _mm_set1_epi16(1);
#endif
const auto input_vector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m64 kZeros = _mm_setzero_si64();
const auto input_vector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType offset = i * kPaddedInputDimensions;
#if defined(USE_AVX512)
__m512i sum = _mm512_setzero_si512();
const auto row = reinterpret_cast<const __m512i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
#if defined(USE_VNNI)
sum = _mm512_dpbusd_epi32(sum, _mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
#else
__m512i product = _mm512_maddubs_epi16(_mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
product = _mm512_madd_epi16(product, kOnes);
sum = _mm512_add_epi32(sum, product);
#endif
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xCC03DAE4u;
hash_value += kOutputDimensions;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
}
// Note: Changing kMaxSimdWidth from 32 to 64 breaks loading existing networks.
// As a result kPaddedInputDimensions may not be an even multiple of 64(512bit)
// and we have to do one more 256bit chunk.
if (kPaddedInputDimensions != kNumChunks * kSimdWidth * 2)
{
const auto iv256 = reinterpret_cast<const __m256i*>(&input_vector[kNumChunks]);
const auto row256 = reinterpret_cast<const __m256i*>(&row[kNumChunks]);
#if defined(USE_VNNI)
__m256i product256 = _mm256_dpbusd_epi32(
_mm512_castsi512_si256(sum), _mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
sum = _mm512_inserti32x8(sum, product256, 0);
#else
__m256i product256 = _mm256_maddubs_epi16(_mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
sum = _mm512_add_epi32(sum, _mm512_cvtepi16_epi32(product256));
#endif
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "AffineTransform[" +
std::to_string(kOutputDimensions) + "<-" +
std::to_string(kInputDimensions) + "](" +
PreviousLayer::GetStructureString() + ")";
}
output[i] = _mm512_reduce_add_epi32(sum) + biases_[i];
#elif defined(USE_AVX2)
__m256i sum = _mm256_setzero_si256();
const auto row = reinterpret_cast<const __m256i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
#if defined(USE_VNNI)
sum = _mm256_dpbusd_epi32(sum, _mm256_loadA_si256(&input_vector[j]), _mm256_load_si256(&row[j]));
#else
__m256i product = _mm256_maddubs_epi16(_mm256_loadA_si256(&input_vector[j]), _mm256_load_si256(&row[j]));
product = _mm256_madd_epi16(product, kOnes);
sum = _mm256_add_epi32(sum, product);
#endif
// Read network parameters
bool ReadParameters(std::istream& stream) {
if (!previous_layer_.ReadParameters(stream))
return false;
for (std::size_t i = 0; i < kOutputDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
weights_[i] = read_little_endian<WeightType>(stream);
return !stream.fail();
}
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
output[i] = _mm_cvtsi128_si32(sum128) + biases_[i];
#elif defined(USE_SSSE3)
__m128i sum = _mm_setzero_si128();
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (int j = 0; j < (int)kNumChunks - 1; j += 2) {
__m128i product0 = _mm_maddubs_epi16(_mm_load_si128(&input_vector[j]), _mm_load_si128(&row[j]));
product0 = _mm_madd_epi16(product0, kOnes);
sum = _mm_add_epi32(sum, product0);
__m128i product1 = _mm_maddubs_epi16(_mm_load_si128(&input_vector[j+1]), _mm_load_si128(&row[j+1]));
product1 = _mm_madd_epi16(product1, kOnes);
sum = _mm_add_epi32(sum, product1);
// write parameters
bool WriteParameters(std::ostream& stream) const {
if (!previous_layer_.WriteParameters(stream))
return false;
stream.write(reinterpret_cast<const char*>(biases_),
kOutputDimensions * sizeof(BiasType));
stream.write(reinterpret_cast<const char*>(weights_),
kOutputDimensions * kPaddedInputDimensions *
sizeof(WeightType));
return !stream.fail();
}
if (kNumChunks & 0x1) {
__m128i product = _mm_maddubs_epi16(_mm_load_si128(&input_vector[kNumChunks-1]), _mm_load_si128(&row[kNumChunks-1]));
product = _mm_madd_epi16(product, kOnes);
sum = _mm_add_epi32(sum, product);
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
const auto input_vector = reinterpret_cast<const __m512i*>(input);
#if !defined(USE_VNNI)
const __m512i kOnes = _mm512_set1_epi16(1);
#endif
#elif defined(USE_AVX2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const __m256i*>(input);
#if !defined(USE_VNNI)
const __m256i kOnes = _mm256_set1_epi16(1);
#endif
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
#ifndef USE_SSSE3
const __m128i kZeros = _mm_setzero_si128();
#else
const __m128i kOnes = _mm_set1_epi16(1);
#endif
const auto input_vector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m64 kZeros = _mm_setzero_si64();
const auto input_vector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType offset = i * kPaddedInputDimensions;
#if defined(USE_AVX512)
__m512i sum = _mm512_setzero_si512();
const auto row = reinterpret_cast<const __m512i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
#if defined(USE_VNNI)
sum = _mm512_dpbusd_epi32(sum, _mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
#else
__m512i product = _mm512_maddubs_epi16(_mm512_loadA_si512(&input_vector[j]), _mm512_load_si512(&row[j]));
product = _mm512_madd_epi16(product, kOnes);
sum = _mm512_add_epi32(sum, product);
#endif
}
// Note: Changing kMaxSimdWidth from 32 to 64 breaks loading existing networks.
// As a result kPaddedInputDimensions may not be an even multiple of 64(512bit)
// and we have to do one more 256bit chunk.
if (kPaddedInputDimensions != kNumChunks * kSimdWidth * 2)
{
const auto iv256 = reinterpret_cast<const __m256i*>(&input_vector[kNumChunks]);
const auto row256 = reinterpret_cast<const __m256i*>(&row[kNumChunks]);
#if defined(USE_VNNI)
__m256i product256 = _mm256_dpbusd_epi32(
_mm512_castsi512_si256(sum), _mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
sum = _mm512_inserti32x8(sum, product256, 0);
#else
__m256i product256 = _mm256_maddubs_epi16(_mm256_loadA_si256(&iv256[0]), _mm256_load_si256(&row256[0]));
sum = _mm512_add_epi32(sum, _mm512_cvtepi16_epi32(product256));
#endif
}
output[i] = _mm512_reduce_add_epi32(sum) + biases_[i];
#elif defined(USE_AVX2)
__m256i sum = _mm256_setzero_si256();
const auto row = reinterpret_cast<const __m256i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
#if defined(USE_VNNI)
sum = _mm256_dpbusd_epi32(sum, _mm256_loadA_si256(&input_vector[j]), _mm256_load_si256(&row[j]));
#else
__m256i product = _mm256_maddubs_epi16(_mm256_loadA_si256(&input_vector[j]), _mm256_load_si256(&row[j]));
product = _mm256_madd_epi16(product, kOnes);
sum = _mm256_add_epi32(sum, product);
#endif
}
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
output[i] = _mm_cvtsi128_si32(sum128) + biases_[i];
#elif defined(USE_SSSE3)
__m128i sum = _mm_setzero_si128();
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (int j = 0; j < (int)kNumChunks - 1; j += 2) {
__m128i product0 = _mm_maddubs_epi16(_mm_load_si128(&input_vector[j]), _mm_load_si128(&row[j]));
product0 = _mm_madd_epi16(product0, kOnes);
sum = _mm_add_epi32(sum, product0);
__m128i product1 = _mm_maddubs_epi16(_mm_load_si128(&input_vector[j+1]), _mm_load_si128(&row[j+1]));
product1 = _mm_madd_epi16(product1, kOnes);
sum = _mm_add_epi32(sum, product1);
}
if (kNumChunks & 0x1) {
__m128i product = _mm_maddubs_epi16(_mm_load_si128(&input_vector[kNumChunks-1]), _mm_load_si128(&row[kNumChunks-1]));
product = _mm_madd_epi16(product, kOnes);
sum = _mm_add_epi32(sum, product);
}
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
output[i] = _mm_cvtsi128_si32(sum) + biases_[i];
#elif defined(USE_SSE2)
__m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
__m128i sum_hi = kZeros;
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&input_vector[j]);
__m128i row_signs = _mm_cmpgt_epi8(kZeros, row_j);
__m128i extended_row_lo = _mm_unpacklo_epi8(row_j, row_signs);
__m128i extended_row_hi = _mm_unpackhi_epi8(row_j, row_signs);
__m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
__m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
__m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
__m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_epi32(sum_lo, product_lo);
sum_hi = _mm_add_epi32(sum_hi, product_hi);
}
__m128i sum = _mm_add_epi32(sum_lo, sum_hi);
__m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_high_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_MMX)
__m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
__m64 sum_hi = kZeros;
const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = input_vector[j];
__m64 row_signs = _mm_cmpgt_pi8(kZeros, row_j);
__m64 extended_row_lo = _mm_unpacklo_pi8(row_j, row_signs);
__m64 extended_row_hi = _mm_unpackhi_pi8(row_j, row_signs);
__m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
__m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
__m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
__m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_pi32(sum_lo, product_lo);
sum_hi = _mm_add_pi32(sum_hi, product_hi);
}
__m64 sum = _mm_add_pi32(sum_lo, sum_hi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases_[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#else
OutputType sum = biases_[i];
for (IndexType j = 0; j < kInputDimensions; ++j) {
sum += weights_[offset + j] * input[j];
}
output[i] = sum;
#endif
}
#if defined(USE_MMX)
_mm_empty();
#endif
return output;
}
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
output[i] = _mm_cvtsi128_si32(sum) + biases_[i];
#elif defined(USE_SSE2)
__m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
__m128i sum_hi = kZeros;
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&input_vector[j]);
__m128i row_signs = _mm_cmpgt_epi8(kZeros, row_j);
__m128i extended_row_lo = _mm_unpacklo_epi8(row_j, row_signs);
__m128i extended_row_hi = _mm_unpackhi_epi8(row_j, row_signs);
__m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
__m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
__m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
__m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_epi32(sum_lo, product_lo);
sum_hi = _mm_add_epi32(sum_hi, product_hi);
}
__m128i sum = _mm_add_epi32(sum_lo, sum_hi);
__m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_high_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
#elif defined(USE_MMX)
__m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
__m64 sum_hi = kZeros;
const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = input_vector[j];
__m64 row_signs = _mm_cmpgt_pi8(kZeros, row_j);
__m64 extended_row_lo = _mm_unpacklo_pi8(row_j, row_signs);
__m64 extended_row_hi = _mm_unpackhi_pi8(row_j, row_signs);
__m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
__m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
__m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
__m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_pi32(sum_lo, product_lo);
sum_hi = _mm_add_pi32(sum_hi, product_hi);
}
__m64 sum = _mm_add_pi32(sum_lo, sum_hi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
// Make the learning class a friend
friend class Trainer<AffineTransform>;
#elif defined(USE_NEON)
int32x4_t sum = {biases_[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
PreviousLayer previous_layer_;
#else
OutputType sum = biases_[i];
for (IndexType j = 0; j < kInputDimensions; ++j) {
sum += weights_[offset + j] * input[j];
}
output[i] = sum;
#endif
}
#if defined(USE_MMX)
_mm_empty();
#endif
return output;
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
// Make the learning class a friend
friend class Trainer<AffineTransform>;
PreviousLayer previous_layer_;
alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
alignas(kCacheLineSize)
WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
};
alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
};
} // namespace Eval::NNUE::Layers

View File

@@ -1,19 +1,19 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer ClippedReLU of NNUE evaluation function
@@ -21,160 +21,169 @@
#ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
#include "../nnue_common.h"
#include "nnue/nnue_common.h"
#include <string>
#include <cstdint>
#include <type_traits>
namespace Eval::NNUE::Layers {
// Clipped ReLU
template <typename PreviousLayer>
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::uint8_t;
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Clipped ReLU
template <typename PreviousLayer>
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
using OutputType = std::uint8_t;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
}
static constexpr IndexType kOutputDimensions = kInputDimensions;
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "ClippedReLU[" +
std::to_string(kOutputDimensions) + "](" +
PreviousLayer::GetStructureString() + ")";
}
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
}
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
// write parameters
bool WriteParameters(std::ostream& stream) const {
return previous_layer_.WriteParameters(stream);
}
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "ClippedReLU[" +
std::to_string(kOutputDimensions) + "](" +
PreviousLayer::GetStructureString() + ")";
}
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_loadA_si256(&in[i * 4 + 0]),
_mm256_loadA_si256(&in[i * 4 + 1])), kWeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_loadA_si256(&in[i * 4 + 2]),
_mm256_loadA_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_storeA_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
}
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
// write parameters
bool WriteParameters(std::ostream& stream) const {
return previous_layer_.WriteParameters(stream);
}
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_loadA_si256(&in[i * 4 + 0]),
_mm256_loadA_si256(&in[i * 4 + 1])), kWeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_loadA_si256(&in[i * 4 + 2]),
_mm256_loadA_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_storeA_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
}
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
#else
constexpr IndexType kStart = 0;
#endif
#if defined(USE_SSE41)
const __m128i kZero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
}
return output;
}
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
private:
// Make the learning class a friend
friend class Trainer<ClippedReLU>;
PreviousLayer previous_layer_;
};
#if defined(USE_SSE41)
_mm_max_epi8(packedbytes, kZero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
#else
constexpr IndexType kStart = 0;
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
}
return output;
}
private:
// Make the learning class a friend
friend class Trainer<ClippedReLU>;
PreviousLayer previous_layer_;
};
} // namespace Eval::NNUE::Layers

View File

@@ -1,19 +1,19 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// NNUE evaluation function layer InputSlice definition
@@ -21,59 +21,63 @@
#ifndef NNUE_LAYERS_INPUT_SLICE_H_INCLUDED
#define NNUE_LAYERS_INPUT_SLICE_H_INCLUDED
#include "../nnue_common.h"
#include "nnue/nnue_common.h"
#include <string>
#include <cstdint>
namespace Eval::NNUE::Layers {
// Input layer
template <IndexType OutputDimensions, IndexType Offset = 0>
class InputSlice {
public:
// Need to maintain alignment
static_assert(Offset % kMaxSimdWidth == 0, "");
// Input layer
template <IndexType OutputDimensions, IndexType Offset = 0>
class InputSlice {
public:
// Need to maintain alignment
static_assert(Offset % kMaxSimdWidth == 0, "");
// Output type
using OutputType = TransformedFeatureType;
// Output type
using OutputType = TransformedFeatureType;
// Output dimensionality
static constexpr IndexType kOutputDimensions = OutputDimensions;
// Output dimensionality
static constexpr IndexType kOutputDimensions = OutputDimensions;
// Size of forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = 0;
// Size of forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = 0;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xEC42E90Du;
hash_value ^= kOutputDimensions ^ (Offset << 10);
return hash_value;
}
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xEC42E90Du;
hash_value ^= kOutputDimensions ^ (Offset << 10);
return hash_value;
}
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "InputSlice[" + std::to_string(kOutputDimensions) + "(" +
std::to_string(Offset) + ":" +
std::to_string(Offset + kOutputDimensions) + ")]";
}
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "InputSlice[" + std::to_string(kOutputDimensions) + "(" +
std::to_string(Offset) + ":" +
std::to_string(Offset + kOutputDimensions) + ")]";
}
// Read network parameters
bool ReadParameters(std::istream& /*stream*/) {
return true;
}
// Read network parameters
bool ReadParameters(std::istream& /*stream*/) {
return true;
}
// write parameters
bool WriteParameters(std::ostream& /*stream*/) const {
return true;
}
// write parameters
bool WriteParameters(std::ostream& /*stream*/) const {
return true;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features,
char* /*buffer*/) const {
return transformed_features + Offset;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features,
char* /*buffer*/) const {
private:
};
return transformed_features + Offset;
}
private:
};
} // namespace Layers

View File

@@ -1,159 +1,166 @@
// Definition of layer Sum of NNUE evaluation function
#ifndef _NNUE_LAYERS_SUM_H_
#ifndef _NNUE_LAYERS_SUM_H_
#define _NNUE_LAYERS_SUM_H_
#include "../nnue_common.h"
#include "nnue/nnue_common.h"
namespace Eval {
// Definition of layer Sum of NNUE evaluation function
namespace Eval::NNUE::Layers {
namespace NNUE {
// Layer that sums the output of multiple layers
template <typename FirstPreviousLayer, typename... RemainingPreviousLayers>
class Sum : public Sum<RemainingPreviousLayers...> {
private:
using Head = FirstPreviousLayer;
using Tail = Sum<RemainingPreviousLayers...>;
namespace Layers {
public:
// Input/output type
using InputType = typename Head::OutputType;
// Layer that sums the output of multiple layers
template <typename FirstPreviousLayer, typename... RemainingPreviousLayers>
class Sum : public Sum<RemainingPreviousLayers...> {
private:
using Head = FirstPreviousLayer;
using Tail = Sum<RemainingPreviousLayers...>;
using OutputType = InputType;
public:
// Input/output type
using InputType = typename Head::OutputType;
using OutputType = InputType;
static_assert(std::is_same<InputType, typename Tail::InputType>::value, "");
static_assert(std::is_same<InputType, typename Tail::InputType>::value, "");
// number of input/output dimensions
static constexpr IndexType kInputDimensions = Head::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
static_assert(kInputDimensions == Tail::kInputDimensions ,"");
// number of input/output dimensions
static constexpr IndexType kInputDimensions = Head::kOutputDimensions;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static constexpr IndexType kOutputDimensions = kInputDimensions;
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
std::max(Head::kBufferSize + kSelfBufferSize, Tail::kBufferSize);
static_assert(kInputDimensions == Tail::kInputDimensions ,"");
// Hash value embedded in the evaluation function file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xBCE400B4u;
hash_value ^= Head::GetHashValue() >> 1;
hash_value ^= Head::GetHashValue() << 31;
hash_value ^= Tail::GetHashValue() >> 2;
hash_value ^= Tail::GetHashValue() << 30;
return hash_value;
}
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "Sum[" +
std::to_string(kOutputDimensions) + "](" + GetSummandsString() + ")";
}
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
std::max(Head::kBufferSize + kSelfBufferSize, Tail::kBufferSize);
// read parameters
bool ReadParameters(std::istream& stream) {
if (!Tail::ReadParameters(stream)) return false;
return previous_layer_.ReadParameters(stream);
}
// Hash value embedded in the evaluation function file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xBCE400B4u;
hash_value ^= Head::GetHashValue() >> 1;
hash_value ^= Head::GetHashValue() << 31;
hash_value ^= Tail::GetHashValue() >> 2;
hash_value ^= Tail::GetHashValue() << 30;
return hash_value;
}
// write parameters
bool WriteParameters(std::ostream& stream) const {
if (!Tail::WriteParameters(stream)) return false;
return previous_layer_.WriteParameters(stream);
}
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "Sum[" +
std::to_string(kOutputDimensions) + "](" + GetSummandsString() + ")";
}
// forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
Tail::Propagate(transformed_features, buffer);
const auto head_output = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
for (IndexType i = 0; i <kOutputDimensions; ++i) {
output[i] += head_output[i];
}
return output;
}
// read parameters
bool ReadParameters(std::istream& stream) {
if (!Tail::ReadParameters(stream))
return false;
protected:
// A string that represents the list of layers to be summed
static std::string GetSummandsString() {
return Head::GetStructureString() + "," + Tail::GetSummandsString();
}
return previous_layer_.ReadParameters(stream);
}
// Make the learning class a friend
friend class Trainer<Sum>;
// write parameters
bool WriteParameters(std::ostream& stream) const {
if (!Tail::WriteParameters(stream))
return false;
// the layer immediately before this layer
FirstPreviousLayer previous_layer_;
};
return previous_layer_.WriteParameters(stream);
}
// Layer that sums the output of multiple layers (when there is one template argument)
template <typename PreviousLayer>
class Sum<PreviousLayer> {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = InputType;
// forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
// number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
Tail::Propagate(transformed_features, buffer);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = PreviousLayer::kBufferSize;
const auto head_output = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
// Hash value embedded in the evaluation function file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xBCE400B4u;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
}
const auto output = reinterpret_cast<OutputType*>(buffer);
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "Sum[" +
std::to_string(kOutputDimensions) + "](" + GetSummandsString() + ")";
}
for (IndexType i = 0; i <kOutputDimensions; ++i) {
output[i] += head_output[i];
}
// read parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
}
return output;
}
// write parameters
bool WriteParameters(std::ostream& stream) const {
return previous_layer_.WriteParameters(stream);
}
protected:
// A string that represents the list of layers to be summed
static std::string GetSummandsString() {
return Head::GetStructureString() + "," + Tail::GetSummandsString();
}
// forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
return previous_layer_.Propagate(transformed_features, buffer);
}
// Make the learning class a friend
friend class Trainer<Sum>;
protected:
// A string that represents the list of layers to be summed
static std::string GetSummandsString() {
return PreviousLayer::GetStructureString();
}
// the layer immediately before this layer
FirstPreviousLayer previous_layer_;
};
// Make the learning class a friend
friend class Trainer<Sum>;
// Layer that sums the output of multiple layers (when there is one template argument)
template <typename PreviousLayer>
class Sum<PreviousLayer> {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
// the layer immediately before this layer
PreviousLayer previous_layer_;
};
using OutputType = InputType;
} // namespace Layers
// number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
} // namespace NNUE
static constexpr IndexType kOutputDimensions = kInputDimensions;
} // namespace Eval
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = PreviousLayer::kBufferSize;
// Hash value embedded in the evaluation function file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xBCE400B4u;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
}
// A string that represents the structure from the input layer to this layer
static std::string GetStructureString() {
return "Sum[" +
std::to_string(kOutputDimensions) + "](" + GetSummandsString() + ")";
}
// read parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
}
// write parameters
bool WriteParameters(std::ostream& stream) const {
return previous_layer_.WriteParameters(stream);
}
// forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
return previous_layer_.Propagate(transformed_features, buffer);
}
protected:
// A string that represents the list of layers to be summed
static std::string GetSummandsString() {
return PreviousLayer::GetStructureString();
}
// Make the learning class a friend
friend class Trainer<Sum>;
// the layer immediately before this layer
PreviousLayer previous_layer_;
};
} // namespace Eval::NNUE::Layers
#endif