Prepare feature transformer learner.

This commit is contained in:
Tomasz Sobczyk
2020-11-22 21:38:11 +01:00
committed by nodchip
parent a3c78691a2
commit 15c528ca7b

View File

@@ -89,56 +89,88 @@ namespace Eval::NNUE {
quantize_parameters();
}
// forward propagation
const LearnFloatType* propagate(ThreadPool& thread_pool, const std::vector<Example>& batch) {
if (output_.size() < kOutputDimensions * batch.size()) {
output_.resize(kOutputDimensions * batch.size());
gradients_.resize(kOutputDimensions * batch.size());
const LearnFloatType* step_start(ThreadPool& thread_pool, const std::vector<Example>& combined_batch)
{
if (output_.size() < kOutputDimensions * combined_batch.size()) {
output_.resize(kOutputDimensions * combined_batch.size());
gradients_.resize(kOutputDimensions * combined_batch.size());
}
(void)thread_pool;
if (thread_stat_states_.size() < thread_pool.size())
{
thread_stat_states_.resize(thread_pool.size());
}
batch_ = &batch;
// affine transform
thread_pool.for_each_index_with_workers(
0, batch.size(),
[&](Thread&, int b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
if (thread_bias_states_.size() < thread_pool.size())
{
thread_bias_states_.resize(thread_pool.size());
}
batch_ = &combined_batch;
auto& main_thread_bias_state = thread_bias_states_[0];
#if defined(USE_BLAS)
cblas_scopy(
kHalfDimensions, biases_, 1, &output_[output_offset], 1
);
for (const auto& feature : batch[b].training_features[c]) {
const IndexType weights_offset = kHalfDimensions * feature.get_index();
cblas_saxpy(
kHalfDimensions, (float)feature.get_count(),
&weights_[weights_offset], 1, &output_[output_offset], 1
);
}
cblas_sscal(
kHalfDimensions, momentum_, main_thread_bias_state.biases_diff_, 1
);
#else
Blas::scopy(
kHalfDimensions, biases_, 1, &output_[output_offset], 1
);
for (const auto& feature : batch[b].training_features[c]) {
const IndexType weights_offset = kHalfDimensions * feature.get_index();
Blas::saxpy(
kHalfDimensions, (float)feature.get_count(),
&weights_[weights_offset], 1, &output_[output_offset], 1
);
}
Blas::sscal(
kHalfDimensions, momentum_, main_thread_bias_state.biases_diff_, 1
);
#endif
for (IndexType i = 1; i < thread_bias_states_.size(); ++i)
thread_bias_states_[i].reset();
return output_.data();
}
// forward propagation
void propagate(Thread& th, uint64_t offset, uint64_t count) {
auto& thread_stat_state = thread_stat_states_[th.thread_idx()];
for (IndexType b = offset; b < offset + count; ++b)
{
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
#if defined(USE_BLAS)
cblas_scopy(
kHalfDimensions, biases_, 1, &output_[output_offset], 1
);
for (const auto& feature : (*batch_)[b].training_features[c]) {
const IndexType weights_offset = kHalfDimensions * feature.get_index();
cblas_saxpy(
kHalfDimensions, (float)feature.get_count(),
&weights_[weights_offset], 1, &output_[output_offset], 1
);
}
#else
Blas::scopy(
kHalfDimensions, biases_, 1, &output_[output_offset], 1
);
for (const auto& feature : (*batch_)[b].training_features[c]) {
const IndexType weights_offset = kHalfDimensions * feature.get_index();
Blas::saxpy(
kHalfDimensions, (float)feature.get_count(),
&weights_[weights_offset], 1, &output_[output_offset], 1
);
}
#endif
}
);
thread_pool.wait_for_workers_finished();
}
#if defined (USE_SSE2)
@@ -161,49 +193,51 @@ namespace Eval::NNUE {
return _mm_cvtss_f32(_mm_max_ps(max_x_x_13_20, max_x_x_20_13));
};
const int total_size = batch.size() * kOutputDimensions;
const __m128 kZero4 = _mm_set1_ps(+kZero);
const __m128 kOne4 = _mm_set1_ps(+kOne);
__m128 min_pre_activation0 = _mm_set1_ps(min_pre_activation_);
__m128 min_pre_activation1 = _mm_set1_ps(min_pre_activation_);
__m128 max_pre_activation0 = _mm_set1_ps(max_pre_activation_);
__m128 max_pre_activation1 = _mm_set1_ps(max_pre_activation_);
__m128 min_pre_activation0 = _mm_set1_ps(thread_stat_state.min_pre_activation_);
__m128 min_pre_activation1 = _mm_set1_ps(thread_stat_state.min_pre_activation_);
__m128 max_pre_activation0 = _mm_set1_ps(thread_stat_state.max_pre_activation_);
__m128 max_pre_activation1 = _mm_set1_ps(thread_stat_state.max_pre_activation_);
for (int i = 0; i < total_size; i += 16)
for (IndexType b = offset; b < offset + count; ++b)
{
__m128 out0 = _mm_loadu_ps(&output_[i + 0]);
__m128 out1 = _mm_loadu_ps(&output_[i + 4]);
__m128 out2 = _mm_loadu_ps(&output_[i + 8]);
__m128 out3 = _mm_loadu_ps(&output_[i + 12]);
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType i = 0; i < kOutputDimensions; i += 16)
{
__m128 out0 = _mm_loadu_ps(&output_[batch_offset + i + 0]);
__m128 out1 = _mm_loadu_ps(&output_[batch_offset + i + 4]);
__m128 out2 = _mm_loadu_ps(&output_[batch_offset + i + 8]);
__m128 out3 = _mm_loadu_ps(&output_[batch_offset + i + 12]);
__m128 min01 = _mm_min_ps(out0, out1);
__m128 min23 = _mm_min_ps(out2, out3);
__m128 min01 = _mm_min_ps(out0, out1);
__m128 min23 = _mm_min_ps(out2, out3);
__m128 max01 = _mm_max_ps(out0, out1);
__m128 max23 = _mm_max_ps(out2, out3);
__m128 max01 = _mm_max_ps(out0, out1);
__m128 max23 = _mm_max_ps(out2, out3);
min_pre_activation0 = _mm_min_ps(min_pre_activation0, min01);
min_pre_activation1 = _mm_min_ps(min_pre_activation1, min23);
max_pre_activation0 = _mm_max_ps(max_pre_activation0, max01);
max_pre_activation1 = _mm_max_ps(max_pre_activation1, max23);
min_pre_activation0 = _mm_min_ps(min_pre_activation0, min01);
min_pre_activation1 = _mm_min_ps(min_pre_activation1, min23);
max_pre_activation0 = _mm_max_ps(max_pre_activation0, max01);
max_pre_activation1 = _mm_max_ps(max_pre_activation1, max23);
out0 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out0));
out1 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out1));
out2 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out2));
out3 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out3));
out0 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out0));
out1 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out1));
out2 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out2));
out3 = _mm_max_ps(kZero4, _mm_min_ps(kOne4, out3));
_mm_storeu_ps(&output_[i + 0], out0);
_mm_storeu_ps(&output_[i + 4], out1);
_mm_storeu_ps(&output_[i + 8], out2);
_mm_storeu_ps(&output_[i + 12], out3);
_mm_storeu_ps(&output_[batch_offset + i + 0], out0);
_mm_storeu_ps(&output_[batch_offset + i + 4], out1);
_mm_storeu_ps(&output_[batch_offset + i + 8], out2);
_mm_storeu_ps(&output_[batch_offset + i + 12], out3);
}
}
min_pre_activation_ = m128_hmin_ps(_mm_min_ps(min_pre_activation0, min_pre_activation1));
max_pre_activation_ = m128_hmax_ps(_mm_max_ps(max_pre_activation0, max_pre_activation1));
thread_stat_state.min_pre_activation_ = m128_hmin_ps(_mm_min_ps(min_pre_activation0, min_pre_activation1));
thread_stat_state.max_pre_activation_ = m128_hmax_ps(_mm_max_ps(max_pre_activation0, max_pre_activation1));
for (IndexType b = 0; b < batch.size(); ++b)
for (IndexType b = offset; b < offset + count; ++b)
{
const IndexType batch_offset = kOutputDimensions * b;
@@ -217,15 +251,15 @@ namespace Eval::NNUE {
const __m128 out2 = _mm_loadu_ps(&output_[i + 8 + half_offset]);
const __m128 out3 = _mm_loadu_ps(&output_[i + 12 + half_offset]);
__m128 minact0 = _mm_loadu_ps(&min_activations_[i + 0]);
__m128 minact1 = _mm_loadu_ps(&min_activations_[i + 4]);
__m128 minact2 = _mm_loadu_ps(&min_activations_[i + 8]);
__m128 minact3 = _mm_loadu_ps(&min_activations_[i + 12]);
__m128 minact0 = _mm_loadu_ps(&thread_stat_state.min_activations_[i + 0]);
__m128 minact1 = _mm_loadu_ps(&thread_stat_state.min_activations_[i + 4]);
__m128 minact2 = _mm_loadu_ps(&thread_stat_state.min_activations_[i + 8]);
__m128 minact3 = _mm_loadu_ps(&thread_stat_state.min_activations_[i + 12]);
__m128 maxact0 = _mm_loadu_ps(&max_activations_[i + 0]);
__m128 maxact1 = _mm_loadu_ps(&max_activations_[i + 4]);
__m128 maxact2 = _mm_loadu_ps(&max_activations_[i + 8]);
__m128 maxact3 = _mm_loadu_ps(&max_activations_[i + 12]);
__m128 maxact0 = _mm_loadu_ps(&thread_stat_state.max_activations_[i + 0]);
__m128 maxact1 = _mm_loadu_ps(&thread_stat_state.max_activations_[i + 4]);
__m128 maxact2 = _mm_loadu_ps(&thread_stat_state.max_activations_[i + 8]);
__m128 maxact3 = _mm_loadu_ps(&thread_stat_state.max_activations_[i + 12]);
minact0 = _mm_min_ps(out0, minact0);
minact1 = _mm_min_ps(out1, minact1);
@@ -237,15 +271,15 @@ namespace Eval::NNUE {
maxact2 = _mm_max_ps(out2, maxact2);
maxact3 = _mm_max_ps(out3, maxact3);
_mm_storeu_ps(&min_activations_[i + 0], minact0);
_mm_storeu_ps(&min_activations_[i + 4], minact1);
_mm_storeu_ps(&min_activations_[i + 8], minact2);
_mm_storeu_ps(&min_activations_[i + 12], minact3);
_mm_storeu_ps(&thread_stat_state.min_activations_[i + 0], minact0);
_mm_storeu_ps(&thread_stat_state.min_activations_[i + 4], minact1);
_mm_storeu_ps(&thread_stat_state.min_activations_[i + 8], minact2);
_mm_storeu_ps(&thread_stat_state.min_activations_[i + 12], minact3);
_mm_storeu_ps(&max_activations_[i + 0], maxact0);
_mm_storeu_ps(&max_activations_[i + 4], maxact1);
_mm_storeu_ps(&max_activations_[i + 8], maxact2);
_mm_storeu_ps(&max_activations_[i + 12], maxact3);
_mm_storeu_ps(&thread_stat_state.max_activations_[i + 0], maxact0);
_mm_storeu_ps(&thread_stat_state.max_activations_[i + 4], maxact1);
_mm_storeu_ps(&thread_stat_state.max_activations_[i + 8], maxact2);
_mm_storeu_ps(&thread_stat_state.max_activations_[i + 12], maxact3);
}
}
}
@@ -254,33 +288,30 @@ namespace Eval::NNUE {
#else
// clipped ReLU
for (IndexType b = 0; b < batch.size(); ++b) {
for (IndexType b = offset; b < offset + count; ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType index = batch_offset + i;
min_pre_activation_ = std::min(min_pre_activation_, output_[index]);
max_pre_activation_ = std::max(max_pre_activation_, output_[index]);
thread_stat_state.min_pre_activation_ = std::min(thread_stat_state.min_pre_activation_, output_[index]);
thread_stat_state.max_pre_activation_ = std::max(thread_stat_state.max_pre_activation_, output_[index]);
output_[index] = std::max(+kZero, std::min(+kOne, output_[index]));
const IndexType t = i % kHalfDimensions;
min_activations_[t] = std::min(min_activations_[t], output_[index]);
max_activations_[t] = std::max(max_activations_[t], output_[index]);
thread_stat_state.min_activations_[t] = std::min(thread_stat_state.min_activations_[t], output_[index]);
thread_stat_state.max_activations_[t] = std::max(thread_stat_state.max_activations_[t], output_[index]);
}
}
#endif
return output_.data();
}
// backpropagation
void backpropagate(ThreadPool& thread_pool,
void backpropagate(Thread& th,
const LearnFloatType* gradients,
LearnFloatType learning_rate) {
uint64_t offset,
uint64_t count) {
(void)thread_pool;
const LearnFloatType local_learning_rate =
learning_rate * learning_rate_scale_;
auto& thread_stat_state = thread_stat_states_[th.thread_idx()];
auto& thread_bias_state = thread_bias_states_[th.thread_idx()];
#if defined (USE_SSE2)
@@ -290,111 +321,134 @@ namespace Eval::NNUE {
const __m128 kZero4 = _mm_set1_ps(+kZero);
const __m128 kOne4 = _mm_set1_ps(+kOne);
const IndexType total_size = batch_->size() * kOutputDimensions;
for (IndexType i = 0; i < total_size; i += 16)
for (IndexType b = offset; b < offset + count; ++b)
{
__m128 out0 = _mm_loadu_ps(&output_[i + 0]);
__m128 out1 = _mm_loadu_ps(&output_[i + 4]);
__m128 out2 = _mm_loadu_ps(&output_[i + 8]);
__m128 out3 = _mm_loadu_ps(&output_[i + 12]);
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType i = 0; i < kOutputDimensions; i += 16)
{
__m128 out0 = _mm_loadu_ps(&output_[batch_offset + i + 0]);
__m128 out1 = _mm_loadu_ps(&output_[batch_offset + i + 4]);
__m128 out2 = _mm_loadu_ps(&output_[batch_offset + i + 8]);
__m128 out3 = _mm_loadu_ps(&output_[batch_offset + i + 12]);
__m128 clipped0 = _mm_or_ps(_mm_cmple_ps(out0, kZero4), _mm_cmpge_ps(out0, kOne4));
__m128 clipped1 = _mm_or_ps(_mm_cmple_ps(out1, kZero4), _mm_cmpge_ps(out1, kOne4));
__m128 clipped2 = _mm_or_ps(_mm_cmple_ps(out2, kZero4), _mm_cmpge_ps(out2, kOne4));
__m128 clipped3 = _mm_or_ps(_mm_cmple_ps(out3, kZero4), _mm_cmpge_ps(out3, kOne4));
__m128 clipped0 = _mm_or_ps(_mm_cmple_ps(out0, kZero4), _mm_cmpge_ps(out0, kOne4));
__m128 clipped1 = _mm_or_ps(_mm_cmple_ps(out1, kZero4), _mm_cmpge_ps(out1, kOne4));
__m128 clipped2 = _mm_or_ps(_mm_cmple_ps(out2, kZero4), _mm_cmpge_ps(out2, kOne4));
__m128 clipped3 = _mm_or_ps(_mm_cmple_ps(out3, kZero4), _mm_cmpge_ps(out3, kOne4));
__m128 grad0 = _mm_loadu_ps(&gradients[i + 0]);
__m128 grad1 = _mm_loadu_ps(&gradients[i + 4]);
__m128 grad2 = _mm_loadu_ps(&gradients[i + 8]);
__m128 grad3 = _mm_loadu_ps(&gradients[i + 12]);
__m128 grad0 = _mm_loadu_ps(&gradients[batch_offset + i + 0]);
__m128 grad1 = _mm_loadu_ps(&gradients[batch_offset + i + 4]);
__m128 grad2 = _mm_loadu_ps(&gradients[batch_offset + i + 8]);
__m128 grad3 = _mm_loadu_ps(&gradients[batch_offset + i + 12]);
grad0 = _mm_andnot_ps(clipped0, grad0);
grad1 = _mm_andnot_ps(clipped1, grad1);
grad2 = _mm_andnot_ps(clipped2, grad2);
grad3 = _mm_andnot_ps(clipped3, grad3);
grad0 = _mm_andnot_ps(clipped0, grad0);
grad1 = _mm_andnot_ps(clipped1, grad1);
grad2 = _mm_andnot_ps(clipped2, grad2);
grad3 = _mm_andnot_ps(clipped3, grad3);
_mm_storeu_ps(&gradients_[i + 0], grad0);
_mm_storeu_ps(&gradients_[i + 4], grad1);
_mm_storeu_ps(&gradients_[i + 8], grad2);
_mm_storeu_ps(&gradients_[i + 12], grad3);
_mm_storeu_ps(&gradients_[batch_offset + i + 0], grad0);
_mm_storeu_ps(&gradients_[batch_offset + i + 4], grad1);
_mm_storeu_ps(&gradients_[batch_offset + i + 8], grad2);
_mm_storeu_ps(&gradients_[batch_offset + i + 12], grad3);
const int clipped_mask =
(_mm_movemask_ps(clipped0) << 0)
| (_mm_movemask_ps(clipped1) << 4)
| (_mm_movemask_ps(clipped2) << 8)
| (_mm_movemask_ps(clipped3) << 12);
const int clipped_mask =
(_mm_movemask_ps(clipped0) << 0)
| (_mm_movemask_ps(clipped1) << 4)
| (_mm_movemask_ps(clipped2) << 8)
| (_mm_movemask_ps(clipped3) << 12);
num_clipped_ += popcount(clipped_mask);
thread_stat_state.num_clipped_ += popcount(clipped_mask);
}
}
}
#else
for (IndexType b = 0; b < batch_->size(); ++b) {
for (IndexType b = offset; b < offset + count; ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType index = batch_offset + i;
const bool clipped = (output_[index] <= kZero) | (output_[index] >= kOne);
gradients_[index] = gradients[index] * !clipped;
num_clipped_ += clipped;
thread_stat_state.num_clipped_ += clipped;
}
}
#endif
num_total_ += batch_->size() * kOutputDimensions;
thread_stat_state.num_total_ += count * kOutputDimensions;
#if defined(USE_BLAS)
for (IndexType b = offset; b < offset + count; ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
cblas_saxpy(
kHalfDimensions, 1.0,
&gradients_[output_offset], 1, thread_bias_state.biases_diff_, 1
);
}
}
#else
for (IndexType b = offset; b < offset + count; ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
Blas::saxpy(
kHalfDimensions, 1.0,
&gradients_[output_offset], 1, thread_bias_state.biases_diff_, 1
);
}
}
#endif
}
void reduce_thread_stat_state()
{
for (IndexType i = 1; i < thread_stat_states_.size(); ++i)
{
thread_stat_states_[0] += thread_stat_states_[i];
}
}
void reduce_thread_bias_state()
{
for (IndexType i = 1; i < thread_bias_states_.size(); ++i)
{
thread_bias_states_[0] += thread_bias_states_[i];
}
}
void step_end(ThreadPool& thread_pool, LearnFloatType learning_rate) {
const LearnFloatType local_learning_rate =
learning_rate * learning_rate_scale_;
// Since the weight matrix updates only the columns corresponding to the features that appeared in the input,
// Correct the learning rate and adjust the scale without using momentum
const LearnFloatType effective_learning_rate =
static_cast<LearnFloatType>(local_learning_rate / (1.0 - momentum_));
reduce_thread_bias_state();
auto& main_thread_state = thread_bias_states_[0];
#if defined(USE_BLAS)
cblas_sscal(
kHalfDimensions, momentum_, biases_diff_, 1
);
for (IndexType b = 0; b < batch_->size(); ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
cblas_saxpy(
kHalfDimensions, 1.0,
&gradients_[output_offset], 1, biases_diff_, 1
);
}
}
cblas_saxpy(
kHalfDimensions, -local_learning_rate,
biases_diff_, 1, biases_, 1
main_thread_state.biases_diff_, 1, biases_, 1
);
#else
Blas::sscal(
thread_pool,
kHalfDimensions, momentum_, biases_diff_, 1
);
for (IndexType b = 0; b < batch_->size(); ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType c = 0; c < 2; ++c) {
const IndexType output_offset = batch_offset + kHalfDimensions * c;
Blas::saxpy(
thread_pool,
kHalfDimensions, 1.0,
&gradients_[output_offset], 1, biases_diff_, 1
);
}
}
Blas::saxpy(
thread_pool,
kHalfDimensions, -local_learning_rate,
biases_diff_, 1, biases_, 1
main_thread_state.biases_diff_, 1, biases_, 1
);
#endif
@@ -464,7 +518,6 @@ namespace Eval::NNUE {
target_layer_(target_layer),
biases_(),
weights_(),
biases_diff_(),
momentum_(0.2),
learning_rate_scale_(1.0) {
@@ -502,16 +555,8 @@ namespace Eval::NNUE {
}
void reset_stats() {
min_pre_activation_ = std::numeric_limits<LearnFloatType>::max();
max_pre_activation_ = std::numeric_limits<LearnFloatType>::lowest();
std::fill(std::begin(min_activations_), std::end(min_activations_),
std::numeric_limits<LearnFloatType>::max());
std::fill(std::begin(max_activations_), std::end(max_activations_),
std::numeric_limits<LearnFloatType>::lowest());
num_clipped_ = 0;
num_total_ = 0;
for (auto& state : thread_stat_states_)
state.reset();
}
// read parameterized integer
@@ -528,9 +573,10 @@ namespace Eval::NNUE {
target_layer_->weights_[i] / kWeightScale);
}
std::fill(std::begin(biases_diff_), std::end(biases_diff_), +kZero);
reset_stats();
for (auto& state : thread_bias_states_)
state.reset();
}
// Set the weight corresponding to the feature that does not appear in the learning data to 0
@@ -552,10 +598,14 @@ namespace Eval::NNUE {
std::numeric_limits<typename LayerType::WeightType>::max() /
kWeightScale;
reduce_thread_stat_state();
auto& main_thread_state = thread_stat_states_[0];
const auto largest_min_activation = *std::max_element(
std::begin(min_activations_), std::end(min_activations_));
std::begin(main_thread_state.min_activations_), std::end(main_thread_state.min_activations_));
const auto smallest_max_activation = *std::min_element(
std::begin(max_activations_), std::end(max_activations_));
std::begin(main_thread_state.max_activations_), std::end(main_thread_state.max_activations_));
double abs_bias_sum = 0.0;
double abs_weight_sum = 0.0;
@@ -578,8 +628,8 @@ namespace Eval::NNUE {
<< std::endl;
out << " - (min, max) of pre-activations = "
<< min_pre_activation_ << ", "
<< max_pre_activation_ << " (limit = "
<< main_thread_state.min_pre_activation_ << ", "
<< main_thread_state.max_pre_activation_ << " (limit = "
<< kPreActivationLimit << ")"
<< std::endl;
@@ -590,7 +640,7 @@ namespace Eval::NNUE {
out << " - avg_abs_bias = " << abs_bias_sum / std::size(biases_) << std::endl;
out << " - avg_abs_weight = " << abs_weight_sum / std::size(weights_) << std::endl;
out << " - clipped " << static_cast<double>(num_clipped_) / num_total_ * 100.0 << "% of outputs"
out << " - clipped " << static_cast<double>(main_thread_state.num_clipped_) / main_thread_state.num_total_ * 100.0 << "% of outputs"
<< std::endl;
out.unlock();
@@ -620,7 +670,6 @@ namespace Eval::NNUE {
// layer to learn
LayerType* const target_layer_;
IndexType num_clipped_;
IndexType num_total_;
// parameter
@@ -629,7 +678,6 @@ namespace Eval::NNUE {
LearnFloatType weights_[kHalfDimensions * kInputDimensions];
// Buffer used for updating parameters
alignas(kCacheLineSize) LearnFloatType biases_diff_[kHalfDimensions];
std::vector<LearnFloatType, CacheLineAlignedAllocator<LearnFloatType>> gradients_;
// Forward propagation buffer
@@ -643,11 +691,73 @@ namespace Eval::NNUE {
LearnFloatType momentum_;
LearnFloatType learning_rate_scale_;
// Health check statistics
LearnFloatType min_pre_activation_;
LearnFloatType max_pre_activation_;
alignas(kCacheLineSize) LearnFloatType min_activations_[kHalfDimensions];
alignas(kCacheLineSize) LearnFloatType max_activations_[kHalfDimensions];
struct alignas(kCacheLineSize) ThreadStatState
{
alignas(kCacheLineSize) LearnFloatType min_activations_[kHalfDimensions];
alignas(kCacheLineSize) LearnFloatType max_activations_[kHalfDimensions];
LearnFloatType min_pre_activation_;
LearnFloatType max_pre_activation_;
IndexType num_clipped_;
IndexType num_total_;
ThreadStatState() { reset(); }
ThreadStatState& operator+=(const ThreadStatState& other)
{
for (IndexType i = 0; i < kHalfDimensions; ++i)
{
min_activations_[i] = std::min(min_activations_[i], other.min_activations_[i]);
}
for (IndexType i = 0; i < kHalfDimensions; ++i)
{
max_activations_[i] = std::max(max_activations_[i], other.max_activations_[i]);
}
min_pre_activation_ = std::min(min_pre_activation_, other.min_pre_activation_);
max_pre_activation_ = std::max(max_pre_activation_, other.max_pre_activation_);
num_clipped_ += other.num_clipped_;
num_total_ += other.num_total_;
return *this;
}
void reset()
{
std::fill(std::begin(min_activations_), std::end(min_activations_), std::numeric_limits<float>::max());
std::fill(std::begin(max_activations_), std::end(max_activations_), std::numeric_limits<float>::lowest());
min_pre_activation_ = std::numeric_limits<float>::max();
max_pre_activation_ = std::numeric_limits<float>::lowest();
num_clipped_ = 0;
num_total_ = 0;
}
};
struct alignas(kCacheLineSize) ThreadBiasState
{
alignas(kCacheLineSize) LearnFloatType biases_diff_[kHalfDimensions];
ThreadBiasState() { reset(); }
ThreadBiasState& operator+=(const ThreadBiasState& other)
{
for (IndexType i = 0; i < kHalfDimensions; ++i)
{
biases_diff_[i] += other.biases_diff_[i];
}
return *this;
}
void reset()
{
std::fill(std::begin(biases_diff_), std::end(biases_diff_), 0.0f);
}
};
std::vector<ThreadStatState, CacheLineAlignedAllocator<ThreadStatState>> thread_stat_states_;
std::vector<ThreadBiasState, CacheLineAlignedAllocator<ThreadBiasState>> thread_bias_states_;
};
} // namespace Eval::NNUE