mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-06 10:53:50 +08:00
841 lines
35 KiB
C++
841 lines
35 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2025 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// A class that converts the input features of the NNUE evaluation function
|
|
|
|
#ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|
|
#define NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iosfwd>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "../position.h"
|
|
#include "../types.h"
|
|
#include "nnue_accumulator.h"
|
|
#include "nnue_architecture.h"
|
|
#include "nnue_common.h"
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
using BiasType = std::int16_t;
|
|
using WeightType = std::int16_t;
|
|
using PSQTWeightType = std::int32_t;
|
|
|
|
// If vector instructions are enabled, we update and refresh the
|
|
// accumulator tile by tile such that each tile fits in the CPU's
|
|
// vector registers.
|
|
#define VECTOR
|
|
|
|
static_assert(PSQTBuckets % 8 == 0,
|
|
"Per feature PSQT values cannot be processed at granularity lower than 8 at a time.");
|
|
|
|
#ifdef USE_AVX512
|
|
using vec_t = __m512i;
|
|
using psqt_vec_t = __m256i;
|
|
#define vec_load(a) _mm512_load_si512(a)
|
|
#define vec_store(a, b) _mm512_store_si512(a, b)
|
|
#define vec_add_16(a, b) _mm512_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm512_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm512_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm512_setzero_epi32()
|
|
#define vec_set_16(a) _mm512_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm512_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm512_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm512_slli_epi16(a, b)
|
|
// Inverse permuted at load time
|
|
#define vec_packus_16(a, b) _mm512_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) _mm256_load_si256(a)
|
|
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm256_setzero_si256()
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 64
|
|
|
|
#elif USE_AVX2
|
|
using vec_t = __m256i;
|
|
using psqt_vec_t = __m256i;
|
|
#define vec_load(a) _mm256_load_si256(a)
|
|
#define vec_store(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_16(a, b) _mm256_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm256_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm256_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm256_setzero_si256()
|
|
#define vec_set_16(a) _mm256_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm256_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm256_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm256_slli_epi16(a, b)
|
|
// Inverse permuted at load time
|
|
#define vec_packus_16(a, b) _mm256_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) _mm256_load_si256(a)
|
|
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm256_setzero_si256()
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 32
|
|
|
|
#elif USE_SSE2
|
|
using vec_t = __m128i;
|
|
using psqt_vec_t = __m128i;
|
|
#define vec_load(a) (*(a))
|
|
#define vec_store(a, b) *(a) = (b)
|
|
#define vec_add_16(a, b) _mm_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm_setzero_si128()
|
|
#define vec_set_16(a) _mm_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm_slli_epi16(a, b)
|
|
#define vec_packus_16(a, b) _mm_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) (*(a))
|
|
#define vec_store_psqt(a, b) *(a) = (b)
|
|
#define vec_add_psqt_32(a, b) _mm_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm_setzero_si128()
|
|
#define NumRegistersSIMD (Is64Bit ? 16 : 8)
|
|
#define MaxChunkSize 16
|
|
|
|
#elif USE_NEON
|
|
using vec_t = int16x8_t;
|
|
using psqt_vec_t = int32x4_t;
|
|
#define vec_load(a) (*(a))
|
|
#define vec_store(a, b) *(a) = (b)
|
|
#define vec_add_16(a, b) vaddq_s16(a, b)
|
|
#define vec_sub_16(a, b) vsubq_s16(a, b)
|
|
#define vec_mulhi_16(a, b) vqdmulhq_s16(a, b)
|
|
#define vec_zero() \
|
|
vec_t { 0 }
|
|
#define vec_set_16(a) vdupq_n_s16(a)
|
|
#define vec_max_16(a, b) vmaxq_s16(a, b)
|
|
#define vec_min_16(a, b) vminq_s16(a, b)
|
|
#define vec_slli_16(a, b) vshlq_s16(a, vec_set_16(b))
|
|
#define vec_packus_16(a, b) reinterpret_cast<vec_t>(vcombine_u8(vqmovun_s16(a), vqmovun_s16(b)))
|
|
#define vec_load_psqt(a) (*(a))
|
|
#define vec_store_psqt(a, b) *(a) = (b)
|
|
#define vec_add_psqt_32(a, b) vaddq_s32(a, b)
|
|
#define vec_sub_psqt_32(a, b) vsubq_s32(a, b)
|
|
#define vec_zero_psqt() \
|
|
psqt_vec_t { 0 }
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 16
|
|
|
|
#else
|
|
#undef VECTOR
|
|
|
|
#endif
|
|
|
|
// Returns the inverse of a permutation
|
|
template<std::size_t Len>
|
|
constexpr std::array<std::size_t, Len>
|
|
invert_permutation(const std::array<std::size_t, Len>& order) {
|
|
std::array<std::size_t, Len> inverse{};
|
|
for (std::size_t i = 0; i < order.size(); i++)
|
|
inverse[order[i]] = i;
|
|
return inverse;
|
|
}
|
|
|
|
// Divide a byte region of size TotalSize to chunks of size
|
|
// BlockSize, and permute the blocks by a given order
|
|
template<std::size_t BlockSize, typename T, std::size_t N, std::size_t OrderSize>
|
|
void permute(T (&data)[N], const std::array<std::size_t, OrderSize>& order) {
|
|
constexpr std::size_t TotalSize = N * sizeof(T);
|
|
|
|
static_assert(TotalSize % (BlockSize * OrderSize) == 0,
|
|
"ChunkSize * OrderSize must perfectly divide TotalSize");
|
|
|
|
constexpr std::size_t ProcessChunkSize = BlockSize * OrderSize;
|
|
|
|
std::array<std::byte, ProcessChunkSize> buffer{};
|
|
|
|
std::byte* const bytes = reinterpret_cast<std::byte*>(data);
|
|
|
|
for (std::size_t i = 0; i < TotalSize; i += ProcessChunkSize)
|
|
{
|
|
std::byte* const values = &bytes[i];
|
|
|
|
for (std::size_t j = 0; j < OrderSize; j++)
|
|
{
|
|
auto* const buffer_chunk = &buffer[j * BlockSize];
|
|
auto* const value_chunk = &values[order[j] * BlockSize];
|
|
|
|
std::copy(value_chunk, value_chunk + BlockSize, buffer_chunk);
|
|
}
|
|
|
|
std::copy(std::begin(buffer), std::end(buffer), values);
|
|
}
|
|
}
|
|
|
|
// Compute optimal SIMD register count for feature transformer accumulation.
|
|
template<IndexType TransformedFeatureWidth, IndexType HalfDimensions>
|
|
class SIMDTiling {
|
|
#ifdef VECTOR
|
|
// We use __m* types as template arguments, which causes GCC to emit warnings
|
|
// about losing some attribute information. This is irrelevant to us as we
|
|
// only take their size, so the following pragma are harmless.
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
|
#endif
|
|
|
|
template<typename SIMDRegisterType, typename LaneType, int NumLanes, int MaxRegisters>
|
|
static constexpr int BestRegisterCount() {
|
|
constexpr std::size_t RegisterSize = sizeof(SIMDRegisterType);
|
|
constexpr std::size_t LaneSize = sizeof(LaneType);
|
|
|
|
static_assert(RegisterSize >= LaneSize);
|
|
static_assert(MaxRegisters <= NumRegistersSIMD);
|
|
static_assert(MaxRegisters > 0);
|
|
static_assert(NumRegistersSIMD > 0);
|
|
static_assert(RegisterSize % LaneSize == 0);
|
|
static_assert((NumLanes * LaneSize) % RegisterSize == 0);
|
|
|
|
const int ideal = (NumLanes * LaneSize) / RegisterSize;
|
|
if (ideal <= MaxRegisters)
|
|
return ideal;
|
|
|
|
// Look for the largest divisor of the ideal register count that is smaller than MaxRegisters
|
|
for (int divisor = MaxRegisters; divisor > 1; --divisor)
|
|
if (ideal % divisor == 0)
|
|
return divisor;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
public:
|
|
static constexpr int NumRegs =
|
|
BestRegisterCount<vec_t, WeightType, TransformedFeatureWidth, NumRegistersSIMD>();
|
|
static constexpr int NumPsqtRegs =
|
|
BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
|
|
|
|
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
|
|
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
|
|
|
|
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
|
|
static_assert(PSQTBuckets % PsqtTileHeight == 0, "PsqtTileHeight must divide PSQTBuckets");
|
|
#endif
|
|
};
|
|
|
|
|
|
// Input feature converter
|
|
template<IndexType TransformedFeatureDimensions,
|
|
Accumulator<TransformedFeatureDimensions> StateInfo::*accPtr>
|
|
class FeatureTransformer {
|
|
|
|
// Number of output dimensions for one side
|
|
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
|
|
|
|
private:
|
|
using Tiling = SIMDTiling<TransformedFeatureDimensions, HalfDimensions>;
|
|
|
|
public:
|
|
// Output type
|
|
using OutputType = TransformedFeatureType;
|
|
|
|
// Number of input/output dimensions
|
|
static constexpr IndexType InputDimensions = FeatureSet::Dimensions;
|
|
static constexpr IndexType OutputDimensions = HalfDimensions;
|
|
|
|
// Size of forward propagation buffer
|
|
static constexpr std::size_t BufferSize = OutputDimensions * sizeof(OutputType);
|
|
|
|
// Store the order by which 128-bit blocks of a 1024-bit data must
|
|
// be permuted so that calling packus on adjacent vectors of 16-bit
|
|
// integers loaded from the data results in the pre-permutation order
|
|
static constexpr auto PackusEpi16Order = []() -> std::array<std::size_t, 8> {
|
|
#if defined(USE_AVX512)
|
|
// _mm512_packus_epi16 after permutation:
|
|
// | 0 | 2 | 4 | 6 | // Vector 0
|
|
// | 1 | 3 | 5 | 7 | // Vector 1
|
|
// | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | // Packed Result
|
|
return {0, 2, 4, 6, 1, 3, 5, 7};
|
|
#elif defined(USE_AVX2)
|
|
// _mm256_packus_epi16 after permutation:
|
|
// | 0 | 2 | | 4 | 6 | // Vector 0, 2
|
|
// | 1 | 3 | | 5 | 7 | // Vector 1, 3
|
|
// | 0 | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | // Packed Result
|
|
return {0, 2, 1, 3, 4, 6, 5, 7};
|
|
#else
|
|
return {0, 1, 2, 3, 4, 5, 6, 7};
|
|
#endif
|
|
}();
|
|
|
|
static constexpr auto InversePackusEpi16Order = invert_permutation(PackusEpi16Order);
|
|
|
|
// Hash value embedded in the evaluation file
|
|
static constexpr std::uint32_t get_hash_value() {
|
|
return FeatureSet::HashValue ^ (OutputDimensions * 2);
|
|
}
|
|
|
|
void permute_weights() {
|
|
permute<16>(biases, PackusEpi16Order);
|
|
permute<16>(weights, PackusEpi16Order);
|
|
}
|
|
|
|
void unpermute_weights() {
|
|
permute<16>(biases, InversePackusEpi16Order);
|
|
permute<16>(weights, InversePackusEpi16Order);
|
|
}
|
|
|
|
inline void scale_weights(bool read) {
|
|
for (IndexType j = 0; j < InputDimensions; ++j)
|
|
{
|
|
WeightType* w = &weights[j * HalfDimensions];
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
w[i] = read ? w[i] * 2 : w[i] / 2;
|
|
}
|
|
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
biases[i] = read ? biases[i] * 2 : biases[i] / 2;
|
|
}
|
|
|
|
// Read network parameters
|
|
bool read_parameters(std::istream& stream) {
|
|
|
|
read_leb_128<BiasType>(stream, biases, HalfDimensions);
|
|
read_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
|
|
read_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
|
|
|
|
permute_weights();
|
|
scale_weights(true);
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Write network parameters
|
|
bool write_parameters(std::ostream& stream) {
|
|
|
|
unpermute_weights();
|
|
scale_weights(false);
|
|
|
|
write_leb_128<BiasType>(stream, biases, HalfDimensions);
|
|
write_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
|
|
write_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
|
|
|
|
permute_weights();
|
|
scale_weights(true);
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Convert input features
|
|
std::int32_t transform(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache,
|
|
OutputType* output,
|
|
int bucket) const {
|
|
update_accumulator<WHITE>(pos, cache);
|
|
update_accumulator<BLACK>(pos, cache);
|
|
|
|
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
|
|
const auto& psqtAccumulation = (pos.state()->*accPtr).psqtAccumulation;
|
|
const auto psqt =
|
|
(psqtAccumulation[perspectives[0]][bucket] - psqtAccumulation[perspectives[1]][bucket])
|
|
/ 2;
|
|
|
|
const auto& accumulation = (pos.state()->*accPtr).accumulation;
|
|
|
|
for (IndexType p = 0; p < 2; ++p)
|
|
{
|
|
const IndexType offset = (HalfDimensions / 2) * p;
|
|
|
|
#if defined(VECTOR)
|
|
|
|
constexpr IndexType OutputChunkSize = MaxChunkSize;
|
|
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
|
|
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
|
|
|
|
const vec_t Zero = vec_zero();
|
|
const vec_t One = vec_set_16(127 * 2);
|
|
|
|
const vec_t* in0 = reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][0]));
|
|
const vec_t* in1 =
|
|
reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
|
|
vec_t* out = reinterpret_cast<vec_t*>(output + offset);
|
|
|
|
// Per the NNUE architecture, here we want to multiply pairs of
|
|
// clipped elements and divide the product by 128. To do this,
|
|
// we can naively perform min/max operation to clip each of the
|
|
// four int16 vectors, mullo pairs together, then pack them into
|
|
// one int8 vector. However, there exists a faster way.
|
|
|
|
// The idea here is to use the implicit clipping from packus to
|
|
// save us two vec_max_16 instructions. This clipping works due
|
|
// to the fact that any int16 integer below zero will be zeroed
|
|
// on packus.
|
|
|
|
// Consider the case where the second element is negative.
|
|
// If we do standard clipping, that element will be zero, which
|
|
// means our pairwise product is zero. If we perform packus and
|
|
// remove the lower-side clip for the second element, then our
|
|
// product before packus will be negative, and is zeroed on pack.
|
|
// The two operation produce equivalent results, but the second
|
|
// one (using packus) saves one max operation per pair.
|
|
|
|
// But here we run into a problem: mullo does not preserve the
|
|
// sign of the multiplication. We can get around this by doing
|
|
// mulhi, which keeps the sign. But that requires an additional
|
|
// tweak.
|
|
|
|
// mulhi cuts off the last 16 bits of the resulting product,
|
|
// which is the same as performing a rightward shift of 16 bits.
|
|
// We can use this to our advantage. Recall that we want to
|
|
// divide the final product by 128, which is equivalent to a
|
|
// 7-bit right shift. Intuitively, if we shift the clipped
|
|
// value left by 9, and perform mulhi, which shifts the product
|
|
// right by 16 bits, then we will net a right shift of 7 bits.
|
|
// However, this won't work as intended. Since we clip the
|
|
// values to have a maximum value of 127, shifting it by 9 bits
|
|
// might occupy the signed bit, resulting in some positive
|
|
// values being interpreted as negative after the shift.
|
|
|
|
// There is a way, however, to get around this limitation. When
|
|
// loading the network, scale accumulator weights and biases by
|
|
// 2. To get the same pairwise multiplication result as before,
|
|
// we need to divide the product by 128 * 2 * 2 = 512, which
|
|
// amounts to a right shift of 9 bits. So now we only have to
|
|
// shift left by 7 bits, perform mulhi (shifts right by 16 bits)
|
|
// and net a 9 bit right shift. Since we scaled everything by
|
|
// two, the values are clipped at 127 * 2 = 254, which occupies
|
|
// 8 bits. Shifting it by 7 bits left will no longer occupy the
|
|
// signed bit, so we are safe.
|
|
|
|
// Note that on NEON processors, we shift left by 6 instead
|
|
// because the instruction "vqdmulhq_s16" also doubles the
|
|
// return value after the multiplication, adding an extra shift
|
|
// to the left by 1, so we compensate by shifting less before
|
|
// the multiplication.
|
|
|
|
constexpr int shift =
|
|
#if defined(USE_SSE2)
|
|
7;
|
|
#else
|
|
6;
|
|
#endif
|
|
|
|
for (IndexType j = 0; j < NumOutputChunks; ++j)
|
|
{
|
|
const vec_t sum0a =
|
|
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 0], One), Zero), shift);
|
|
const vec_t sum0b =
|
|
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 1], One), Zero), shift);
|
|
const vec_t sum1a = vec_min_16(in1[j * 2 + 0], One);
|
|
const vec_t sum1b = vec_min_16(in1[j * 2 + 1], One);
|
|
|
|
const vec_t pa = vec_mulhi_16(sum0a, sum1a);
|
|
const vec_t pb = vec_mulhi_16(sum0b, sum1b);
|
|
|
|
out[j] = vec_packus_16(pa, pb);
|
|
}
|
|
|
|
#else
|
|
|
|
for (IndexType j = 0; j < HalfDimensions / 2; ++j)
|
|
{
|
|
BiasType sum0 = accumulation[static_cast<int>(perspectives[p])][j + 0];
|
|
BiasType sum1 =
|
|
accumulation[static_cast<int>(perspectives[p])][j + HalfDimensions / 2];
|
|
sum0 = std::clamp<BiasType>(sum0, 0, 127 * 2);
|
|
sum1 = std::clamp<BiasType>(sum1, 0, 127 * 2);
|
|
output[offset + j] = static_cast<OutputType>(unsigned(sum0 * sum1) / 512);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
return psqt;
|
|
} // end of function transform()
|
|
|
|
void hint_common_access(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
update_accumulator<WHITE>(pos, cache);
|
|
update_accumulator<BLACK>(pos, cache);
|
|
}
|
|
|
|
private:
|
|
template<Color Perspective>
|
|
StateInfo* try_find_computed_accumulator(const Position& pos) const {
|
|
// Look for a usable accumulator of an earlier position. We keep track
|
|
// of the estimated gain in terms of features to be added/subtracted.
|
|
StateInfo* st = pos.state();
|
|
int gain = FeatureSet::refresh_cost(pos);
|
|
while (st->previous && !(st->*accPtr).computed[Perspective])
|
|
{
|
|
// This governs when a full feature refresh is needed and how many
|
|
// updates are better than just one full refresh.
|
|
if (FeatureSet::requires_refresh(st, Perspective)
|
|
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
|
|
break;
|
|
st = st->previous;
|
|
}
|
|
return st;
|
|
}
|
|
|
|
// Given a computed accumulator, computes the accumulator of the next position.
|
|
template<Color Perspective>
|
|
void update_accumulator_incremental(const Position& pos, StateInfo* computed) const {
|
|
assert((computed->*accPtr).computed[Perspective]);
|
|
assert(computed->next != nullptr);
|
|
|
|
const Square ksq = pos.square<KING>(Perspective);
|
|
|
|
// The size must be enough to contain the largest possible update.
|
|
// That might depend on the feature set and generally relies on the
|
|
// feature set's update cost calculation to be correct and never allow
|
|
// updates with more added/removed features than MaxActiveDimensions.
|
|
// In this case, the maximum size of both feature addition and removal
|
|
// is 2, since we are incrementally updating one move at a time.
|
|
FeatureSet::IndexList removed, added;
|
|
FeatureSet::append_changed_indices<Perspective>(ksq, computed->next->dirtyPiece, removed,
|
|
added);
|
|
|
|
StateInfo* next = computed->next;
|
|
assert(!(next->*accPtr).computed[Perspective]);
|
|
|
|
if (removed.size() == 0 && added.size() == 0)
|
|
{
|
|
std::memcpy((next->*accPtr).accumulation[Perspective],
|
|
(computed->*accPtr).accumulation[Perspective],
|
|
HalfDimensions * sizeof(BiasType));
|
|
std::memcpy((next->*accPtr).psqtAccumulation[Perspective],
|
|
(computed->*accPtr).psqtAccumulation[Perspective],
|
|
PSQTBuckets * sizeof(PSQTWeightType));
|
|
}
|
|
else
|
|
{
|
|
assert(added.size() == 1 || added.size() == 2);
|
|
assert(removed.size() == 1 || removed.size() == 2);
|
|
assert(added.size() <= removed.size());
|
|
|
|
#ifdef VECTOR
|
|
auto* accIn =
|
|
reinterpret_cast<const vec_t*>(&(computed->*accPtr).accumulation[Perspective][0]);
|
|
auto* accOut = reinterpret_cast<vec_t*>(&(next->*accPtr).accumulation[Perspective][0]);
|
|
|
|
const IndexType offsetA0 = HalfDimensions * added[0];
|
|
auto* columnA0 = reinterpret_cast<const vec_t*>(&weights[offsetA0]);
|
|
const IndexType offsetR0 = HalfDimensions * removed[0];
|
|
auto* columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
|
|
|
|
if (removed.size() == 1)
|
|
{
|
|
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
|
|
accOut[i] = vec_add_16(vec_sub_16(accIn[i], columnR0[i]), columnA0[i]);
|
|
}
|
|
else if (added.size() == 1)
|
|
{
|
|
const IndexType offsetR1 = HalfDimensions * removed[1];
|
|
auto* columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
|
|
|
|
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
|
|
accOut[i] = vec_sub_16(vec_add_16(accIn[i], columnA0[i]),
|
|
vec_add_16(columnR0[i], columnR1[i]));
|
|
}
|
|
else
|
|
{
|
|
const IndexType offsetA1 = HalfDimensions * added[1];
|
|
auto* columnA1 = reinterpret_cast<const vec_t*>(&weights[offsetA1]);
|
|
const IndexType offsetR1 = HalfDimensions * removed[1];
|
|
auto* columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
|
|
|
|
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(vec_t); ++i)
|
|
accOut[i] =
|
|
vec_add_16(accIn[i], vec_sub_16(vec_add_16(columnA0[i], columnA1[i]),
|
|
vec_add_16(columnR0[i], columnR1[i])));
|
|
}
|
|
|
|
auto* accPsqtIn = reinterpret_cast<const psqt_vec_t*>(
|
|
&(computed->*accPtr).psqtAccumulation[Perspective][0]);
|
|
auto* accPsqtOut =
|
|
reinterpret_cast<psqt_vec_t*>(&(next->*accPtr).psqtAccumulation[Perspective][0]);
|
|
|
|
const IndexType offsetPsqtA0 = PSQTBuckets * added[0];
|
|
auto* columnPsqtA0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA0]);
|
|
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0];
|
|
auto* columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
|
|
|
|
if (removed.size() == 1)
|
|
{
|
|
for (std::size_t i = 0;
|
|
i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
|
|
accPsqtOut[i] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[i], columnPsqtR0[i]),
|
|
columnPsqtA0[i]);
|
|
}
|
|
else if (added.size() == 1)
|
|
{
|
|
const IndexType offsetPsqtR1 = PSQTBuckets * removed[1];
|
|
auto* columnPsqtR1 =
|
|
reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
|
|
|
|
for (std::size_t i = 0;
|
|
i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
|
|
accPsqtOut[i] =
|
|
vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[i], columnPsqtA0[i]),
|
|
vec_add_psqt_32(columnPsqtR0[i], columnPsqtR1[i]));
|
|
}
|
|
else
|
|
{
|
|
const IndexType offsetPsqtA1 = PSQTBuckets * added[1];
|
|
auto* columnPsqtA1 =
|
|
reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA1]);
|
|
const IndexType offsetPsqtR1 = PSQTBuckets * removed[1];
|
|
auto* columnPsqtR1 =
|
|
reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
|
|
|
|
for (std::size_t i = 0;
|
|
i < PSQTBuckets * sizeof(PSQTWeightType) / sizeof(psqt_vec_t); ++i)
|
|
accPsqtOut[i] = vec_add_psqt_32(
|
|
accPsqtIn[i],
|
|
vec_sub_psqt_32(vec_add_psqt_32(columnPsqtA0[i], columnPsqtA1[i]),
|
|
vec_add_psqt_32(columnPsqtR0[i], columnPsqtR1[i])));
|
|
}
|
|
#else
|
|
std::memcpy((next->*accPtr).accumulation[Perspective],
|
|
(computed->*accPtr).accumulation[Perspective],
|
|
HalfDimensions * sizeof(BiasType));
|
|
std::memcpy((next->*accPtr).psqtAccumulation[Perspective],
|
|
(computed->*accPtr).psqtAccumulation[Perspective],
|
|
PSQTBuckets * sizeof(PSQTWeightType));
|
|
|
|
// Difference calculation for the deactivated features
|
|
for (const auto index : removed)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
(next->*accPtr).accumulation[Perspective][i] -= weights[offset + i];
|
|
|
|
for (std::size_t i = 0; i < PSQTBuckets; ++i)
|
|
(next->*accPtr).psqtAccumulation[Perspective][i] -=
|
|
psqtWeights[index * PSQTBuckets + i];
|
|
}
|
|
|
|
// Difference calculation for the activated features
|
|
for (const auto index : added)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
(next->*accPtr).accumulation[Perspective][i] += weights[offset + i];
|
|
|
|
for (std::size_t i = 0; i < PSQTBuckets; ++i)
|
|
(next->*accPtr).psqtAccumulation[Perspective][i] +=
|
|
psqtWeights[index * PSQTBuckets + i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
(next->*accPtr).computed[Perspective] = true;
|
|
|
|
if (next != pos.state())
|
|
update_accumulator_incremental<Perspective>(pos, next);
|
|
}
|
|
|
|
|
|
template<Color Perspective>
|
|
void update_accumulator_refresh_cache(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
assert(cache != nullptr);
|
|
|
|
Square ksq = pos.square<KING>(Perspective);
|
|
auto& entry = (*cache)[ksq][Perspective];
|
|
FeatureSet::IndexList removed, added;
|
|
|
|
for (Color c : {WHITE, BLACK})
|
|
{
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
{
|
|
const Piece piece = make_piece(c, pt);
|
|
const Bitboard oldBB = entry.byColorBB[c] & entry.byTypeBB[pt];
|
|
const Bitboard newBB = pos.pieces(c, pt);
|
|
Bitboard toRemove = oldBB & ~newBB;
|
|
Bitboard toAdd = newBB & ~oldBB;
|
|
|
|
while (toRemove)
|
|
{
|
|
Square sq = pop_lsb(toRemove);
|
|
removed.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
|
|
}
|
|
while (toAdd)
|
|
{
|
|
Square sq = pop_lsb(toAdd);
|
|
added.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto& accumulator = pos.state()->*accPtr;
|
|
accumulator.computed[Perspective] = true;
|
|
|
|
#ifdef VECTOR
|
|
vec_t acc[Tiling::NumRegs];
|
|
psqt_vec_t psqt[Tiling::NumPsqtRegs];
|
|
|
|
for (IndexType j = 0; j < HalfDimensions / Tiling::TileHeight; ++j)
|
|
{
|
|
auto* accTile = reinterpret_cast<vec_t*>(
|
|
&accumulator.accumulation[Perspective][j * Tiling::TileHeight]);
|
|
auto* entryTile = reinterpret_cast<vec_t*>(&entry.accumulation[j * Tiling::TileHeight]);
|
|
|
|
for (IndexType k = 0; k < Tiling::NumRegs; ++k)
|
|
acc[k] = entryTile[k];
|
|
|
|
std::size_t i = 0;
|
|
for (; i < std::min(removed.size(), added.size()); ++i)
|
|
{
|
|
IndexType indexR = removed[i];
|
|
const IndexType offsetR = HalfDimensions * indexR + j * Tiling::TileHeight;
|
|
auto* columnR = reinterpret_cast<const vec_t*>(&weights[offsetR]);
|
|
IndexType indexA = added[i];
|
|
const IndexType offsetA = HalfDimensions * indexA + j * Tiling::TileHeight;
|
|
auto* columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
|
|
|
|
for (IndexType k = 0; k < Tiling::NumRegs; ++k)
|
|
acc[k] = vec_add_16(acc[k], vec_sub_16(columnA[k], columnR[k]));
|
|
}
|
|
for (; i < removed.size(); ++i)
|
|
{
|
|
IndexType index = removed[i];
|
|
const IndexType offset = HalfDimensions * index + j * Tiling::TileHeight;
|
|
auto* column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
|
|
for (IndexType k = 0; k < Tiling::NumRegs; ++k)
|
|
acc[k] = vec_sub_16(acc[k], column[k]);
|
|
}
|
|
for (; i < added.size(); ++i)
|
|
{
|
|
IndexType index = added[i];
|
|
const IndexType offset = HalfDimensions * index + j * Tiling::TileHeight;
|
|
auto* column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
|
|
for (IndexType k = 0; k < Tiling::NumRegs; ++k)
|
|
acc[k] = vec_add_16(acc[k], column[k]);
|
|
}
|
|
|
|
for (IndexType k = 0; k < Tiling::NumRegs; k++)
|
|
vec_store(&entryTile[k], acc[k]);
|
|
for (IndexType k = 0; k < Tiling::NumRegs; k++)
|
|
vec_store(&accTile[k], acc[k]);
|
|
}
|
|
|
|
for (IndexType j = 0; j < PSQTBuckets / Tiling::PsqtTileHeight; ++j)
|
|
{
|
|
auto* accTilePsqt = reinterpret_cast<psqt_vec_t*>(
|
|
&accumulator.psqtAccumulation[Perspective][j * Tiling::PsqtTileHeight]);
|
|
auto* entryTilePsqt =
|
|
reinterpret_cast<psqt_vec_t*>(&entry.psqtAccumulation[j * Tiling::PsqtTileHeight]);
|
|
|
|
for (std::size_t k = 0; k < Tiling::NumPsqtRegs; ++k)
|
|
psqt[k] = entryTilePsqt[k];
|
|
|
|
for (std::size_t i = 0; i < removed.size(); ++i)
|
|
{
|
|
IndexType index = removed[i];
|
|
const IndexType offset = PSQTBuckets * index + j * Tiling::PsqtTileHeight;
|
|
auto* columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
|
|
for (std::size_t k = 0; k < Tiling::NumPsqtRegs; ++k)
|
|
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
for (std::size_t i = 0; i < added.size(); ++i)
|
|
{
|
|
IndexType index = added[i];
|
|
const IndexType offset = PSQTBuckets * index + j * Tiling::PsqtTileHeight;
|
|
auto* columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
|
|
for (std::size_t k = 0; k < Tiling::NumPsqtRegs; ++k)
|
|
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
|
|
for (std::size_t k = 0; k < Tiling::NumPsqtRegs; ++k)
|
|
vec_store_psqt(&entryTilePsqt[k], psqt[k]);
|
|
for (std::size_t k = 0; k < Tiling::NumPsqtRegs; ++k)
|
|
vec_store_psqt(&accTilePsqt[k], psqt[k]);
|
|
}
|
|
|
|
#else
|
|
|
|
for (const auto index : removed)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
entry.accumulation[j] -= weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
entry.psqtAccumulation[k] -= psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
for (const auto index : added)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
entry.accumulation[j] += weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
entry.psqtAccumulation[k] += psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
|
|
// The accumulator of the refresh entry has been updated.
|
|
// Now copy its content to the actual accumulator we were refreshing.
|
|
|
|
std::memcpy(accumulator.accumulation[Perspective], entry.accumulation,
|
|
sizeof(BiasType) * HalfDimensions);
|
|
|
|
std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation,
|
|
sizeof(int32_t) * PSQTBuckets);
|
|
#endif
|
|
|
|
for (Color c : {WHITE, BLACK})
|
|
entry.byColorBB[c] = pos.pieces(c);
|
|
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
entry.byTypeBB[pt] = pos.pieces(pt);
|
|
}
|
|
|
|
|
|
template<Color Perspective>
|
|
void update_accumulator(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
if ((pos.state()->*accPtr).computed[Perspective])
|
|
return;
|
|
StateInfo* oldest = try_find_computed_accumulator<Perspective>(pos);
|
|
|
|
if ((oldest->*accPtr).computed[Perspective] && oldest != pos.state())
|
|
// Start from the oldest computed accumulator, update all the
|
|
// accumulators up to the current position.
|
|
update_accumulator_incremental<Perspective>(pos, oldest);
|
|
else
|
|
update_accumulator_refresh_cache<Perspective>(pos, cache);
|
|
}
|
|
|
|
template<IndexType Size>
|
|
friend struct AccumulatorCaches::Cache;
|
|
|
|
alignas(CacheLineSize) BiasType biases[HalfDimensions];
|
|
alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
|
|
alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];
|
|
};
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|
|
|
|
#endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|