Files
Stockfish/src/bitboard.h
nodchip 84f3e86790 Add NNUE evaluation
This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish.

Both the NNUE and the classical evaluations are available, and can be used to
assign a value to a position that is later used in alpha-beta (PVS) search to find the
best move. The classical evaluation computes this value as a function of various chess
concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation
computes this value with a neural network based on basic inputs. The network is optimized
and trained on the evalutions of millions of positions at moderate search depth.

The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward.
It can be evaluated efficiently on CPUs, and exploits the fact that only parts
of the neural network need to be updated after a typical chess move.
[The nodchip repository](https://github.com/nodchip/Stockfish) provides additional
tools to train and develop the NNUE networks.

This patch is the result of contributions of various authors, from various communities,
including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather,
rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler,
dorzechowski, and vondele.

This new evaluation needed various changes to fishtest and the corresponding infrastructure,
for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged.

The first networks have been provided by gekkehenker and sergiovieri, with the latter
net (nn-97f742aaefcd.nnue) being the current default.

The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option,
provided the `EvalFile` option points the the network file (depending on the GUI, with full path).

The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on
the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest:

60000 @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c
ELO: 92.77 +-2.1 (95%) LOS: 100.0%
Total: 60000 W: 24193 L: 8543 D: 27264
Ptnml(0-2): 609, 3850, 9708, 10948, 4885

40000 @ 20+0.2 th 8
https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58
ELO: 89.47 +-2.0 (95%) LOS: 100.0%
Total: 40000 W: 12756 L: 2677 D: 24567
Ptnml(0-2): 74, 1583, 8550, 7776, 2017

At the same time, the impact on the classical evaluation remains minimal, causing no significant
regression:

sprt @ 10+0.1 th 1
https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b
LLR: 2.94 (-2.94,2.94) {-6.00,-4.00}
Total: 34936 W: 6502 L: 6825 D: 21609
Ptnml(0-2): 571, 4082, 8434, 3861, 520

sprt @ 60+0.6 th 1
https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d
LLR: 2.93 (-2.94,2.94) {-6.00,-4.00}
Total: 10088 W: 1232 L: 1265 D: 7591
Ptnml(0-2): 49, 914, 3170, 843, 68

The needed networks can be found at https://tests.stockfishchess.org/nns
It is recommended to use the default one as indicated by the `EvalFile` UCI option.

Guidelines for testing new nets can be found at
https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests

Integration has been discussed in various issues:
https://github.com/official-stockfish/Stockfish/issues/2823
https://github.com/official-stockfish/Stockfish/issues/2728

The integration branch will be closed after the merge:
https://github.com/official-stockfish/Stockfish/pull/2825
https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip

closes https://github.com/official-stockfish/Stockfish/pull/2912

This will be an exciting time for computer chess, looking forward to seeing the evolution of
this approach.

Bench: 4746616
2020-08-06 16:37:45 +02:00

444 lines
13 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include <string>
#include "types.h"
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
}
namespace Bitboards {
void init();
const std::string pretty(Bitboard b);
}
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB;
constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB;
constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB;
constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB);
constexpr Bitboard KingFlank[FILE_NB] = {
QueenSide ^ FileDBB, QueenSide, QueenSide,
CenterFiles, CenterFiles,
KingSide, KingSide, KingSide ^ FileEBB
};
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
/// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return SquareBB[s];
}
/// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) {
return b & (b - 1);
}
constexpr bool opposite_colors(Square s1, Square s2) {
return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1;
}
/// rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank.
constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r);
}
constexpr Bitboard rank_bb(Square s) {
return rank_bb(rank_of(s));
}
constexpr Bitboard file_bb(File f) {
return FileABB << f;
}
constexpr Bitboard file_bb(Square s) {
return file_bb(file_of(s));
}
/// shift() moves a bitboard one or two steps as specified by the direction D
template<Direction D>
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8 : D == SOUTH ? b >> 8
: D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16
: D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
/// pawn_attacks_bb() returns the squares attacked by pawns of the given color
/// from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
}
/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the
/// given color from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_double_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) & shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) & shift<SOUTH_EAST>(b);
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of a given square.
constexpr Bitboard adjacent_files_bb(Square s) {
return shift<EAST>(file_bb(s)) | shift<WEST>(file_bb(s));
}
/// line_bb() returns a bitboard representing an entire line (from board edge
/// to board edge) that intersects the two given squares. If the given squares
/// are not on a same file/rank/diagonal, the function returns 0. For instance,
/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb() returns a bitboard representing squares that are linearly
/// between the two given squares (excluding the given squares). If the given
/// squares are not on a same file/rank/diagonal, we return 0. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5 and E6.
inline Bitboard between_bb(Square s1, Square s2) {
Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2));
return b & (b - 1); //exclude lsb
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks
/// in front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s)
: ~Rank8BB >> 8 * relative_rank(BLACK, s);
}
/// forward_file_bb() returns a bitboard representing all the squares along the
/// line in front of the given one, from the point of view of the given color.
constexpr Bitboard forward_file_bb(Color c, Square s) {
return forward_ranks_bb(c, s) & file_bb(s);
}
/// pawn_attack_span() returns a bitboard representing all the squares that can
/// be attacked by a pawn of the given color when it moves along its file, starting
/// from the given square.
constexpr Bitboard pawn_attack_span(Color c, Square s) {
return forward_ranks_bb(c, s) & adjacent_files_bb(s);
}
/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of
/// the given color and on the given square is a passed pawn.
constexpr Bitboard passed_pawn_span(Color c, Square s) {
return pawn_attack_span(c, s) | forward_file_bb(c, s);
}
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3;
}
/// distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y.
template<typename T1 = Square> inline int distance(Square x, Square y);
template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.
inline Bitboard safe_destination(Square s, int step)
{
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
/// assuming an empty board.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
}
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece
/// assuming the board is occupied according to the passed Bitboard.
/// Sliding piece attacks do not continue passed an occupied square.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP: return attacks_bb<BISHOP>(s, occupied);
case ROOK : return attacks_bb< ROOK>(s, occupied);
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[pt][s];
}
}
/// popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union { Bitboard bb; uint16_t u[4]; } v = { b };
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
return (int)_mm_popcnt_u64(b);
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
#endif
}
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICC
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
if (b & 0xffffffff) {
_BitScanForward(&idx, int32_t(b));
return Square(idx);
} else {
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
if (b >> 32) {
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
} else {
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#endif
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard* b) {
assert(*b);
const Square s = lsb(*b);
*b &= *b - 1;
return s;
}
/// frontmost_sq() returns the most advanced square for the given color,
/// requires a non-zero bitboard.
inline Square frontmost_sq(Color c, Bitboard b) {
assert(b);
return c == WHITE ? msb(b) : lsb(b);
}
#endif // #ifndef BITBOARD_H_INCLUDED