Files
Stockfish/src/evaluate.h
Linmiao Xu be9bc420af Update default net to nn-60fa44e376d9.nnue
Created by retraining the master net on the previous best dataset with additional filtering. No new data was added.

More of the Leela-dfrc_n5000.binpack part of the dataset was pre-filtered with depth6 multipv2 search to remove bestmove captures. About 93% of the previous Leela/SF data and 99% of the SF dfrc data was filtered. Unfiltered parts of the dataset were left out. The new Leela T80 oct+nov data is the same as before. All early game positions with ply count <= 28 were skipped during training by modifying the training data loader in nnue-pytorch.

Trained in a similar way as recent master nets, with a different nnue-pytorch branch for early ply skipping:

python3 easy_train.py \
  --experiment-name=leela93-dfrc99-filt-only-T80-oct-nov-skip28 \
  --training-dataset=/data/leela93-dfrc99-filt-only-T80-oct-nov.binpack \
  --start-from-engine-test-net True \
  --nnue-pytorch-branch=linrock/nnue-pytorch/misc-fixes-skip-ply-lteq-28 \
  --gpus="0," \
  --start-lambda=1.0 \
  --end-lambda=0.75 \
  --gamma=0.995 \
  --lr=4.375e-4 \
  --tui=False \
  --seed=$RANDOM \
  --max_epoch=800 \
  --network-testing-threads 20 \
  --num-workers 6

For the exact training data used: https://robotmoon.com/nnue-training-data/
Details about the previous best dataset: #4295

Local testing at a fixed 25k nodes:
experiment_leela93-dfrc99-filt-only-T80-oct-nov-skip28
Local Elo: run_0/nn-epoch779.nnue : 5.1 +/- 1.5

Passed STC
https://tests.stockfishchess.org/tests/view/63adb3acae97a464904fd4e8
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 36504 W: 9847 L: 9538 D: 17119
Ptnml(0-2): 108, 3981, 9784, 4252, 127

Passed LTC
https://tests.stockfishchess.org/tests/view/63ae0ae25bd1e5f27f13d884
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 36592 W: 10017 L: 9717 D: 16858
Ptnml(0-2): 17, 3461, 11037, 3767, 14

closes https://github.com/official-stockfish/Stockfish/pull/4314

bench 4015511
2023-01-01 12:28:51 +01:00

63 lines
1.8 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef EVALUATE_H_INCLUDED
#define EVALUATE_H_INCLUDED
#include <string>
#include <optional>
#include "types.h"
namespace Stockfish {
class Position;
namespace Eval {
std::string trace(Position& pos);
Value evaluate(const Position& pos, int* complexity = nullptr);
extern bool useNNUE;
extern std::string currentEvalFileName;
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-60fa44e376d9.nnue"
namespace NNUE {
std::string trace(Position& pos);
Value evaluate(const Position& pos, bool adjusted = false, int* complexity = nullptr);
void init();
void verify();
bool load_eval(std::string name, std::istream& stream);
bool save_eval(std::ostream& stream);
bool save_eval(const std::optional<std::string>& filename);
} // namespace NNUE
} // namespace Eval
} // namespace Stockfish
#endif // #ifndef EVALUATE_H_INCLUDED