Files
Stockfish/src/evaluate.cpp
Robert Nurnberg 9b92ada935 Base WDL model on material count and normalize evals dynamically
This PR proposes to change the parameter dependence of Stockfish's
internal WDL model from full move counter to material count. In addition
it ensures that an evaluation of 100 centipawns always corresponds to a
50% win probability at fishtest LTC, whereas for master this holds only
at move number 32. See also
https://github.com/official-stockfish/Stockfish/pull/4920 and the
discussion therein.

The new model was fitted based on about 340M positions extracted from
5.6M fishtest LTC games from the last three weeks, involving SF versions
from e67cc979fd (SF 16.1) to current
master.

The involved commands are for
[WDL_model](https://github.com/official-stockfish/WDL_model) are:
```
./updateWDL.sh --firstrev e67cc979fd
python scoreWDL.py updateWDL.json --plot save --pgnName update_material.png --momType "material" --momTarget 58 --materialMin 10 --modelFitting optimizeProbability
```

The anchor `58` for the material count value was chosen to be as close
as possible to the observed average material count of fishtest LTC games
at move 32 (`43`), while not changing the value of
`NormalizeToPawnValue` compared to the move-based WDL model by more than
1.

The patch only affects the displayed cp and wdl values.

closes https://github.com/official-stockfish/Stockfish/pull/5121

No functional change
2024-03-20 16:29:35 +01:00

107 lines
3.9 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "evaluate.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "nnue/network.h"
#include "nnue/nnue_misc.h"
#include "position.h"
#include "types.h"
#include "uci.h"
namespace Stockfish {
// Returns a static, purely materialistic evaluation of the position from
// the point of view of the given color. It can be divided by PawnValue to get
// an approximation of the material advantage on the board in terms of pawns.
int Eval::simple_eval(const Position& pos, Color c) {
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
+ (pos.non_pawn_material(c) - pos.non_pawn_material(~c));
}
// Evaluate is the evaluator for the outer world. It returns a static evaluation
// of the position from the point of view of the side to move.
Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos, int optimism) {
assert(!pos.checkers());
int simpleEval = simple_eval(pos, pos.side_to_move());
bool smallNet = std::abs(simpleEval) > SmallNetThreshold;
bool psqtOnly = std::abs(simpleEval) > PsqtOnlyThreshold;
int nnueComplexity;
Value nnue = smallNet ? networks.small.evaluate(pos, true, &nnueComplexity, psqtOnly)
: networks.big.evaluate(pos, true, &nnueComplexity, false);
// Blend optimism and eval with nnue complexity and material imbalance
optimism += optimism * (nnueComplexity + std::abs(simpleEval - nnue)) / 524;
nnue -= nnue * (nnueComplexity + std::abs(simpleEval - nnue)) / 31950;
int npm = pos.non_pawn_material() / 64;
int v = (nnue * (927 + npm + 9 * pos.count<PAWN>()) + optimism * (159 + npm)) / 1000;
// Damp down the evaluation linearly when shuffling
int shuffling = pos.rule50_count();
v = v * (195 - shuffling) / 228;
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
return v;
}
// Like evaluate(), but instead of returning a value, it returns
// a string (suitable for outputting to stdout) that contains the detailed
// descriptions and values of each evaluation term. Useful for debugging.
// Trace scores are from white's point of view
std::string Eval::trace(Position& pos, const Eval::NNUE::Networks& networks) {
if (pos.checkers())
return "Final evaluation: none (in check)";
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos, networks) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
Value v = networks.big.evaluate(pos, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCI::to_cp(v, pos) << " (white side)\n";
v = evaluate(networks, pos, VALUE_ZERO);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCI::to_cp(v, pos) << " (white side)";
ss << " [with scaled NNUE, ...]";
ss << "\n";
return ss.str();
}
} // namespace Stockfish