mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-27 04:26:24 +08:00
- Capitalize comments - Reformat multi-lines comments to equalize the widths of the lines - Try to keep the width of comments around 85 characters - Remove periods at the end of single-line comments closes https://github.com/official-stockfish/Stockfish/pull/5469 No functional change
888 lines
36 KiB
C++
888 lines
36 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// A class that converts the input features of the NNUE evaluation function
|
|
|
|
#ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|
|
#define NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iosfwd>
|
|
#include <utility>
|
|
|
|
#include "../position.h"
|
|
#include "../types.h"
|
|
#include "nnue_accumulator.h"
|
|
#include "nnue_architecture.h"
|
|
#include "nnue_common.h"
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
using BiasType = std::int16_t;
|
|
using WeightType = std::int16_t;
|
|
using PSQTWeightType = std::int32_t;
|
|
|
|
// If vector instructions are enabled, we update and refresh the
|
|
// accumulator tile by tile such that each tile fits in the CPU's
|
|
// vector registers.
|
|
#define VECTOR
|
|
|
|
static_assert(PSQTBuckets % 8 == 0,
|
|
"Per feature PSQT values cannot be processed at granularity lower than 8 at a time.");
|
|
|
|
#ifdef USE_AVX512
|
|
using vec_t = __m512i;
|
|
using psqt_vec_t = __m256i;
|
|
#define vec_load(a) _mm512_load_si512(a)
|
|
#define vec_store(a, b) _mm512_store_si512(a, b)
|
|
#define vec_add_16(a, b) _mm512_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm512_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm512_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm512_setzero_epi32()
|
|
#define vec_set_16(a) _mm512_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm512_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm512_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm512_slli_epi16(a, b)
|
|
// Inverse permuted at load time
|
|
#define vec_packus_16(a, b) _mm512_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) _mm256_load_si256(a)
|
|
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm256_setzero_si256()
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 64
|
|
|
|
#elif USE_AVX2
|
|
using vec_t = __m256i;
|
|
using psqt_vec_t = __m256i;
|
|
#define vec_load(a) _mm256_load_si256(a)
|
|
#define vec_store(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_16(a, b) _mm256_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm256_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm256_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm256_setzero_si256()
|
|
#define vec_set_16(a) _mm256_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm256_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm256_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm256_slli_epi16(a, b)
|
|
// Inverse permuted at load time
|
|
#define vec_packus_16(a, b) _mm256_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) _mm256_load_si256(a)
|
|
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
|
|
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm256_setzero_si256()
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 32
|
|
|
|
#elif USE_SSE2
|
|
using vec_t = __m128i;
|
|
using psqt_vec_t = __m128i;
|
|
#define vec_load(a) (*(a))
|
|
#define vec_store(a, b) *(a) = (b)
|
|
#define vec_add_16(a, b) _mm_add_epi16(a, b)
|
|
#define vec_sub_16(a, b) _mm_sub_epi16(a, b)
|
|
#define vec_mulhi_16(a, b) _mm_mulhi_epi16(a, b)
|
|
#define vec_zero() _mm_setzero_si128()
|
|
#define vec_set_16(a) _mm_set1_epi16(a)
|
|
#define vec_max_16(a, b) _mm_max_epi16(a, b)
|
|
#define vec_min_16(a, b) _mm_min_epi16(a, b)
|
|
#define vec_slli_16(a, b) _mm_slli_epi16(a, b)
|
|
#define vec_packus_16(a, b) _mm_packus_epi16(a, b)
|
|
#define vec_load_psqt(a) (*(a))
|
|
#define vec_store_psqt(a, b) *(a) = (b)
|
|
#define vec_add_psqt_32(a, b) _mm_add_epi32(a, b)
|
|
#define vec_sub_psqt_32(a, b) _mm_sub_epi32(a, b)
|
|
#define vec_zero_psqt() _mm_setzero_si128()
|
|
#define NumRegistersSIMD (Is64Bit ? 16 : 8)
|
|
#define MaxChunkSize 16
|
|
|
|
#elif USE_NEON
|
|
using vec_t = int16x8_t;
|
|
using psqt_vec_t = int32x4_t;
|
|
#define vec_load(a) (*(a))
|
|
#define vec_store(a, b) *(a) = (b)
|
|
#define vec_add_16(a, b) vaddq_s16(a, b)
|
|
#define vec_sub_16(a, b) vsubq_s16(a, b)
|
|
#define vec_mulhi_16(a, b) vqdmulhq_s16(a, b)
|
|
#define vec_zero() \
|
|
vec_t { 0 }
|
|
#define vec_set_16(a) vdupq_n_s16(a)
|
|
#define vec_max_16(a, b) vmaxq_s16(a, b)
|
|
#define vec_min_16(a, b) vminq_s16(a, b)
|
|
#define vec_slli_16(a, b) vshlq_s16(a, vec_set_16(b))
|
|
#define vec_packus_16(a, b) reinterpret_cast<vec_t>(vcombine_u8(vqmovun_s16(a), vqmovun_s16(b)))
|
|
#define vec_load_psqt(a) (*(a))
|
|
#define vec_store_psqt(a, b) *(a) = (b)
|
|
#define vec_add_psqt_32(a, b) vaddq_s32(a, b)
|
|
#define vec_sub_psqt_32(a, b) vsubq_s32(a, b)
|
|
#define vec_zero_psqt() \
|
|
psqt_vec_t { 0 }
|
|
#define NumRegistersSIMD 16
|
|
#define MaxChunkSize 16
|
|
|
|
#else
|
|
#undef VECTOR
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef VECTOR
|
|
|
|
// Compute optimal SIMD register count for feature transformer accumulation.
|
|
|
|
// We use __m* types as template arguments, which causes GCC to emit warnings
|
|
// about losing some attribute information. This is irrelevant to us as we
|
|
// only take their size, so the following pragma are harmless.
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
|
#endif
|
|
|
|
template<typename SIMDRegisterType, typename LaneType, int NumLanes, int MaxRegisters>
|
|
static constexpr int BestRegisterCount() {
|
|
#define RegisterSize sizeof(SIMDRegisterType)
|
|
#define LaneSize sizeof(LaneType)
|
|
|
|
static_assert(RegisterSize >= LaneSize);
|
|
static_assert(MaxRegisters <= NumRegistersSIMD);
|
|
static_assert(MaxRegisters > 0);
|
|
static_assert(NumRegistersSIMD > 0);
|
|
static_assert(RegisterSize % LaneSize == 0);
|
|
static_assert((NumLanes * LaneSize) % RegisterSize == 0);
|
|
|
|
const int ideal = (NumLanes * LaneSize) / RegisterSize;
|
|
if (ideal <= MaxRegisters)
|
|
return ideal;
|
|
|
|
// Look for the largest divisor of the ideal register count that is smaller than MaxRegisters
|
|
for (int divisor = MaxRegisters; divisor > 1; --divisor)
|
|
if (ideal % divisor == 0)
|
|
return divisor;
|
|
|
|
return 1;
|
|
}
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// Input feature converter
|
|
template<IndexType TransformedFeatureDimensions,
|
|
Accumulator<TransformedFeatureDimensions> StateInfo::*accPtr>
|
|
class FeatureTransformer {
|
|
|
|
// Number of output dimensions for one side
|
|
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
|
|
|
|
private:
|
|
#ifdef VECTOR
|
|
static constexpr int NumRegs =
|
|
BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
|
|
static constexpr int NumPsqtRegs =
|
|
BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
|
|
|
|
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
|
|
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
|
|
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
|
|
static_assert(PSQTBuckets % PsqtTileHeight == 0, "PsqtTileHeight must divide PSQTBuckets");
|
|
#endif
|
|
|
|
public:
|
|
// Output type
|
|
using OutputType = TransformedFeatureType;
|
|
|
|
// Number of input/output dimensions
|
|
static constexpr IndexType InputDimensions = FeatureSet::Dimensions;
|
|
static constexpr IndexType OutputDimensions = HalfDimensions;
|
|
|
|
// Size of forward propagation buffer
|
|
static constexpr std::size_t BufferSize = OutputDimensions * sizeof(OutputType);
|
|
|
|
// Hash value embedded in the evaluation file
|
|
static constexpr std::uint32_t get_hash_value() {
|
|
return FeatureSet::HashValue ^ (OutputDimensions * 2);
|
|
}
|
|
|
|
static constexpr void order_packs([[maybe_unused]] uint64_t* v) {
|
|
#if defined(USE_AVX512) // _mm512_packs_epi16 ordering
|
|
uint64_t tmp0 = v[2], tmp1 = v[3];
|
|
v[2] = v[8], v[3] = v[9];
|
|
v[8] = v[4], v[9] = v[5];
|
|
v[4] = tmp0, v[5] = tmp1;
|
|
tmp0 = v[6], tmp1 = v[7];
|
|
v[6] = v[10], v[7] = v[11];
|
|
v[10] = v[12], v[11] = v[13];
|
|
v[12] = tmp0, v[13] = tmp1;
|
|
#elif defined(USE_AVX2) // _mm256_packs_epi16 ordering
|
|
std::swap(v[2], v[4]);
|
|
std::swap(v[3], v[5]);
|
|
#endif
|
|
}
|
|
|
|
static constexpr void inverse_order_packs([[maybe_unused]] uint64_t* v) {
|
|
#if defined(USE_AVX512) // Inverse _mm512_packs_epi16 ordering
|
|
uint64_t tmp0 = v[2], tmp1 = v[3];
|
|
v[2] = v[4], v[3] = v[5];
|
|
v[4] = v[8], v[5] = v[9];
|
|
v[8] = tmp0, v[9] = tmp1;
|
|
tmp0 = v[6], tmp1 = v[7];
|
|
v[6] = v[12], v[7] = v[13];
|
|
v[12] = v[10], v[13] = v[11];
|
|
v[10] = tmp0, v[11] = tmp1;
|
|
#elif defined(USE_AVX2) // Inverse _mm256_packs_epi16 ordering
|
|
std::swap(v[2], v[4]);
|
|
std::swap(v[3], v[5]);
|
|
#endif
|
|
}
|
|
|
|
void permute_weights([[maybe_unused]] void (*order_fn)(uint64_t*)) const {
|
|
#if defined(USE_AVX2)
|
|
#if defined(USE_AVX512)
|
|
constexpr IndexType di = 16;
|
|
#else
|
|
constexpr IndexType di = 8;
|
|
#endif
|
|
uint64_t* b = reinterpret_cast<uint64_t*>(const_cast<BiasType*>(&biases[0]));
|
|
for (IndexType i = 0; i < HalfDimensions * sizeof(BiasType) / sizeof(uint64_t); i += di)
|
|
order_fn(&b[i]);
|
|
|
|
for (IndexType j = 0; j < InputDimensions; ++j)
|
|
{
|
|
uint64_t* w =
|
|
reinterpret_cast<uint64_t*>(const_cast<WeightType*>(&weights[j * HalfDimensions]));
|
|
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(uint64_t);
|
|
i += di)
|
|
order_fn(&w[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline void scale_weights(bool read) const {
|
|
for (IndexType j = 0; j < InputDimensions; ++j)
|
|
{
|
|
WeightType* w = const_cast<WeightType*>(&weights[j * HalfDimensions]);
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
w[i] = read ? w[i] * 2 : w[i] / 2;
|
|
}
|
|
|
|
BiasType* b = const_cast<BiasType*>(biases);
|
|
for (IndexType i = 0; i < HalfDimensions; ++i)
|
|
b[i] = read ? b[i] * 2 : b[i] / 2;
|
|
}
|
|
|
|
// Read network parameters
|
|
bool read_parameters(std::istream& stream) {
|
|
|
|
read_leb_128<BiasType>(stream, biases, HalfDimensions);
|
|
read_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
|
|
read_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
|
|
|
|
permute_weights(inverse_order_packs);
|
|
scale_weights(true);
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Write network parameters
|
|
bool write_parameters(std::ostream& stream) const {
|
|
|
|
permute_weights(order_packs);
|
|
scale_weights(false);
|
|
|
|
write_leb_128<BiasType>(stream, biases, HalfDimensions);
|
|
write_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
|
|
write_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
|
|
|
|
permute_weights(inverse_order_packs);
|
|
scale_weights(true);
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Convert input features
|
|
std::int32_t transform(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache,
|
|
OutputType* output,
|
|
int bucket) const {
|
|
update_accumulator<WHITE>(pos, cache);
|
|
update_accumulator<BLACK>(pos, cache);
|
|
|
|
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
|
|
const auto& psqtAccumulation = (pos.state()->*accPtr).psqtAccumulation;
|
|
const auto psqt =
|
|
(psqtAccumulation[perspectives[0]][bucket] - psqtAccumulation[perspectives[1]][bucket])
|
|
/ 2;
|
|
|
|
const auto& accumulation = (pos.state()->*accPtr).accumulation;
|
|
|
|
for (IndexType p = 0; p < 2; ++p)
|
|
{
|
|
const IndexType offset = (HalfDimensions / 2) * p;
|
|
|
|
#if defined(VECTOR)
|
|
|
|
constexpr IndexType OutputChunkSize = MaxChunkSize;
|
|
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
|
|
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
|
|
|
|
const vec_t Zero = vec_zero();
|
|
const vec_t One = vec_set_16(127 * 2);
|
|
|
|
const vec_t* in0 = reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][0]));
|
|
const vec_t* in1 =
|
|
reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
|
|
vec_t* out = reinterpret_cast<vec_t*>(output + offset);
|
|
|
|
for (IndexType j = 0; j < NumOutputChunks; ++j)
|
|
{
|
|
// What we want to do is multiply inputs in a pairwise manner
|
|
// (after clipping), and then shift right by 9. Instead, we
|
|
// shift left by 7, and use mulhi, stripping the bottom 16 bits,
|
|
// effectively shifting right by 16, resulting in a net shift
|
|
// of 9 bits. We use mulhi because it maintains the sign of
|
|
// the multiplication (unlike mullo), allowing us to make use
|
|
// of packus to clip 2 of the inputs, resulting in a save of 2
|
|
// "vec_max_16" calls. A special case is when we use NEON,
|
|
// where we shift left by 6 instead, because the instruction
|
|
// "vqdmulhq_s16" also doubles the return value after the
|
|
// multiplication, adding an extra shift to the left by 1, so
|
|
// we compensate by shifting less before the multiplication.
|
|
|
|
#if defined(USE_SSE2)
|
|
constexpr int shift = 7;
|
|
#else
|
|
constexpr int shift = 6;
|
|
#endif
|
|
const vec_t sum0a =
|
|
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 0], One), Zero), shift);
|
|
const vec_t sum0b =
|
|
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 1], One), Zero), shift);
|
|
const vec_t sum1a = vec_min_16(in1[j * 2 + 0], One);
|
|
const vec_t sum1b = vec_min_16(in1[j * 2 + 1], One);
|
|
|
|
const vec_t pa = vec_mulhi_16(sum0a, sum1a);
|
|
const vec_t pb = vec_mulhi_16(sum0b, sum1b);
|
|
|
|
out[j] = vec_packus_16(pa, pb);
|
|
}
|
|
|
|
#else
|
|
|
|
for (IndexType j = 0; j < HalfDimensions / 2; ++j)
|
|
{
|
|
BiasType sum0 = accumulation[static_cast<int>(perspectives[p])][j + 0];
|
|
BiasType sum1 =
|
|
accumulation[static_cast<int>(perspectives[p])][j + HalfDimensions / 2];
|
|
sum0 = std::clamp<BiasType>(sum0, 0, 127 * 2);
|
|
sum1 = std::clamp<BiasType>(sum1, 0, 127 * 2);
|
|
output[offset + j] = static_cast<OutputType>(unsigned(sum0 * sum1) / 512);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
return psqt;
|
|
} // end of function transform()
|
|
|
|
void hint_common_access(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
hint_common_access_for_perspective<WHITE>(pos, cache);
|
|
hint_common_access_for_perspective<BLACK>(pos, cache);
|
|
}
|
|
|
|
private:
|
|
template<Color Perspective>
|
|
[[nodiscard]] std::pair<StateInfo*, StateInfo*>
|
|
try_find_computed_accumulator(const Position& pos) const {
|
|
// Look for a usable accumulator of an earlier position. We keep track
|
|
// of the estimated gain in terms of features to be added/subtracted.
|
|
StateInfo *st = pos.state(), *next = nullptr;
|
|
int gain = FeatureSet::refresh_cost(pos);
|
|
while (st->previous && !(st->*accPtr).computed[Perspective])
|
|
{
|
|
// This governs when a full feature refresh is needed and how many
|
|
// updates are better than just one full refresh.
|
|
if (FeatureSet::requires_refresh(st, Perspective)
|
|
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
|
|
break;
|
|
next = st;
|
|
st = st->previous;
|
|
}
|
|
return {st, next};
|
|
}
|
|
|
|
// NOTE: The parameter states_to_update is an array of position states.
|
|
// All states must be sequential, that is states_to_update[i] must
|
|
// either be reachable by repeatedly applying ->previous from
|
|
// states_to_update[i+1], and computed_st must be reachable by
|
|
// repeatedly applying ->previous on states_to_update[0].
|
|
template<Color Perspective, size_t N>
|
|
void update_accumulator_incremental(const Position& pos,
|
|
StateInfo* computed_st,
|
|
StateInfo* states_to_update[N]) const {
|
|
static_assert(N > 0);
|
|
assert([&]() {
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
if (states_to_update[i] == nullptr)
|
|
return false;
|
|
}
|
|
return true;
|
|
}());
|
|
|
|
#ifdef VECTOR
|
|
// Gcc-10.2 unnecessarily spills AVX2 registers if this array
|
|
// is defined in the VECTOR code below, once in each branch.
|
|
vec_t acc[NumRegs];
|
|
psqt_vec_t psqt[NumPsqtRegs];
|
|
#endif
|
|
|
|
// Update incrementally going back through states_to_update.
|
|
// Gather all features to be updated.
|
|
const Square ksq = pos.square<KING>(Perspective);
|
|
|
|
// The size must be enough to contain the largest possible update.
|
|
// That might depend on the feature set and generally relies on the
|
|
// feature set's update cost calculation to be correct and never allow
|
|
// updates with more added/removed features than MaxActiveDimensions.
|
|
FeatureSet::IndexList removed[N], added[N];
|
|
|
|
for (int i = N - 1; i >= 0; --i)
|
|
{
|
|
(states_to_update[i]->*accPtr).computed[Perspective] = true;
|
|
|
|
const StateInfo* end_state = i == 0 ? computed_st : states_to_update[i - 1];
|
|
|
|
for (StateInfo* st2 = states_to_update[i]; st2 != end_state; st2 = st2->previous)
|
|
FeatureSet::append_changed_indices<Perspective>(ksq, st2->dirtyPiece, removed[i],
|
|
added[i]);
|
|
}
|
|
|
|
StateInfo* st = computed_st;
|
|
|
|
// Now update the accumulators listed in states_to_update[],
|
|
// where the last element is a sentinel.
|
|
#ifdef VECTOR
|
|
|
|
if (N == 1 && (removed[0].size() == 1 || removed[0].size() == 2) && added[0].size() == 1)
|
|
{
|
|
assert(states_to_update[0]);
|
|
|
|
auto accIn =
|
|
reinterpret_cast<const vec_t*>(&(st->*accPtr).accumulation[Perspective][0]);
|
|
auto accOut = reinterpret_cast<vec_t*>(
|
|
&(states_to_update[0]->*accPtr).accumulation[Perspective][0]);
|
|
|
|
const IndexType offsetR0 = HalfDimensions * removed[0][0];
|
|
auto columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
|
|
const IndexType offsetA = HalfDimensions * added[0][0];
|
|
auto columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
|
|
|
|
if (removed[0].size() == 1)
|
|
{
|
|
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
|
|
++k)
|
|
accOut[k] = vec_add_16(vec_sub_16(accIn[k], columnR0[k]), columnA[k]);
|
|
}
|
|
else
|
|
{
|
|
const IndexType offsetR1 = HalfDimensions * removed[0][1];
|
|
auto columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
|
|
|
|
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
|
|
++k)
|
|
accOut[k] = vec_sub_16(vec_add_16(accIn[k], columnA[k]),
|
|
vec_add_16(columnR0[k], columnR1[k]));
|
|
}
|
|
|
|
auto accPsqtIn =
|
|
reinterpret_cast<const psqt_vec_t*>(&(st->*accPtr).psqtAccumulation[Perspective][0]);
|
|
auto accPsqtOut = reinterpret_cast<psqt_vec_t*>(
|
|
&(states_to_update[0]->*accPtr).psqtAccumulation[Perspective][0]);
|
|
|
|
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0][0];
|
|
auto columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
|
|
const IndexType offsetPsqtA = PSQTBuckets * added[0][0];
|
|
auto columnPsqtA = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA]);
|
|
|
|
if (removed[0].size() == 1)
|
|
{
|
|
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
|
|
++k)
|
|
accPsqtOut[k] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[k], columnPsqtR0[k]),
|
|
columnPsqtA[k]);
|
|
}
|
|
else
|
|
{
|
|
const IndexType offsetPsqtR1 = PSQTBuckets * removed[0][1];
|
|
auto columnPsqtR1 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
|
|
++k)
|
|
accPsqtOut[k] =
|
|
vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[k], columnPsqtA[k]),
|
|
vec_add_psqt_32(columnPsqtR0[k], columnPsqtR1[k]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
|
|
{
|
|
// Load accumulator
|
|
auto accTileIn = reinterpret_cast<const vec_t*>(
|
|
&(st->*accPtr).accumulation[Perspective][j * TileHeight]);
|
|
for (IndexType k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_load(&accTileIn[k]);
|
|
|
|
for (IndexType i = 0; i < N; ++i)
|
|
{
|
|
// Difference calculation for the deactivated features
|
|
for (const auto index : removed[i])
|
|
{
|
|
const IndexType offset = HalfDimensions * index + j * TileHeight;
|
|
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
for (IndexType k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_sub_16(acc[k], column[k]);
|
|
}
|
|
|
|
// Difference calculation for the activated features
|
|
for (const auto index : added[i])
|
|
{
|
|
const IndexType offset = HalfDimensions * index + j * TileHeight;
|
|
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
for (IndexType k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_add_16(acc[k], column[k]);
|
|
}
|
|
|
|
// Store accumulator
|
|
auto accTileOut = reinterpret_cast<vec_t*>(
|
|
&(states_to_update[i]->*accPtr).accumulation[Perspective][j * TileHeight]);
|
|
for (IndexType k = 0; k < NumRegs; ++k)
|
|
vec_store(&accTileOut[k], acc[k]);
|
|
}
|
|
}
|
|
|
|
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
|
|
{
|
|
// Load accumulator
|
|
auto accTilePsqtIn = reinterpret_cast<const psqt_vec_t*>(
|
|
&(st->*accPtr).psqtAccumulation[Perspective][j * PsqtTileHeight]);
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = vec_load_psqt(&accTilePsqtIn[k]);
|
|
|
|
for (IndexType i = 0; i < N; ++i)
|
|
{
|
|
// Difference calculation for the deactivated features
|
|
for (const auto index : removed[i])
|
|
{
|
|
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
|
|
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
|
|
// Difference calculation for the activated features
|
|
for (const auto index : added[i])
|
|
{
|
|
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
|
|
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
|
|
// Store accumulator
|
|
auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
|
|
&(states_to_update[i]->*accPtr)
|
|
.psqtAccumulation[Perspective][j * PsqtTileHeight]);
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
vec_store_psqt(&accTilePsqtOut[k], psqt[k]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
for (IndexType i = 0; i < N; ++i)
|
|
{
|
|
std::memcpy((states_to_update[i]->*accPtr).accumulation[Perspective],
|
|
(st->*accPtr).accumulation[Perspective], HalfDimensions * sizeof(BiasType));
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
(states_to_update[i]->*accPtr).psqtAccumulation[Perspective][k] =
|
|
(st->*accPtr).psqtAccumulation[Perspective][k];
|
|
|
|
st = states_to_update[i];
|
|
|
|
// Difference calculation for the deactivated features
|
|
for (const auto index : removed[i])
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
(st->*accPtr).accumulation[Perspective][j] -= weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
(st->*accPtr).psqtAccumulation[Perspective][k] -=
|
|
psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
|
|
// Difference calculation for the activated features
|
|
for (const auto index : added[i])
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
(st->*accPtr).accumulation[Perspective][j] += weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
(st->*accPtr).psqtAccumulation[Perspective][k] +=
|
|
psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template<Color Perspective>
|
|
void update_accumulator_refresh_cache(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
assert(cache != nullptr);
|
|
|
|
Square ksq = pos.square<KING>(Perspective);
|
|
auto& entry = (*cache)[ksq][Perspective];
|
|
FeatureSet::IndexList removed, added;
|
|
|
|
for (Color c : {WHITE, BLACK})
|
|
{
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
{
|
|
const Piece piece = make_piece(c, pt);
|
|
const Bitboard oldBB = entry.byColorBB[c] & entry.byTypeBB[pt];
|
|
const Bitboard newBB = pos.pieces(c, pt);
|
|
Bitboard toRemove = oldBB & ~newBB;
|
|
Bitboard toAdd = newBB & ~oldBB;
|
|
|
|
while (toRemove)
|
|
{
|
|
Square sq = pop_lsb(toRemove);
|
|
removed.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
|
|
}
|
|
while (toAdd)
|
|
{
|
|
Square sq = pop_lsb(toAdd);
|
|
added.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto& accumulator = pos.state()->*accPtr;
|
|
accumulator.computed[Perspective] = true;
|
|
|
|
#ifdef VECTOR
|
|
vec_t acc[NumRegs];
|
|
psqt_vec_t psqt[NumPsqtRegs];
|
|
|
|
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
|
|
{
|
|
auto accTile =
|
|
reinterpret_cast<vec_t*>(&accumulator.accumulation[Perspective][j * TileHeight]);
|
|
auto entryTile = reinterpret_cast<vec_t*>(&entry.accumulation[j * TileHeight]);
|
|
|
|
for (IndexType k = 0; k < NumRegs; ++k)
|
|
acc[k] = entryTile[k];
|
|
|
|
int i = 0;
|
|
for (; i < int(std::min(removed.size(), added.size())); ++i)
|
|
{
|
|
IndexType indexR = removed[i];
|
|
const IndexType offsetR = HalfDimensions * indexR + j * TileHeight;
|
|
auto columnR = reinterpret_cast<const vec_t*>(&weights[offsetR]);
|
|
IndexType indexA = added[i];
|
|
const IndexType offsetA = HalfDimensions * indexA + j * TileHeight;
|
|
auto columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
|
|
|
|
for (unsigned k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_add_16(acc[k], vec_sub_16(columnA[k], columnR[k]));
|
|
}
|
|
for (; i < int(removed.size()); ++i)
|
|
{
|
|
IndexType index = removed[i];
|
|
const IndexType offset = HalfDimensions * index + j * TileHeight;
|
|
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
|
|
for (unsigned k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_sub_16(acc[k], column[k]);
|
|
}
|
|
for (; i < int(added.size()); ++i)
|
|
{
|
|
IndexType index = added[i];
|
|
const IndexType offset = HalfDimensions * index + j * TileHeight;
|
|
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
|
|
|
|
for (unsigned k = 0; k < NumRegs; ++k)
|
|
acc[k] = vec_add_16(acc[k], column[k]);
|
|
}
|
|
|
|
for (IndexType k = 0; k < NumRegs; k++)
|
|
vec_store(&entryTile[k], acc[k]);
|
|
for (IndexType k = 0; k < NumRegs; k++)
|
|
vec_store(&accTile[k], acc[k]);
|
|
}
|
|
|
|
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
|
|
{
|
|
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
|
|
&accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
|
|
auto entryTilePsqt =
|
|
reinterpret_cast<psqt_vec_t*>(&entry.psqtAccumulation[j * PsqtTileHeight]);
|
|
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = entryTilePsqt[k];
|
|
|
|
for (int i = 0; i < int(removed.size()); ++i)
|
|
{
|
|
IndexType index = removed[i];
|
|
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
|
|
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
for (int i = 0; i < int(added.size()); ++i)
|
|
{
|
|
IndexType index = added[i];
|
|
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
|
|
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
|
|
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
|
|
}
|
|
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
vec_store_psqt(&entryTilePsqt[k], psqt[k]);
|
|
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
|
|
vec_store_psqt(&accTilePsqt[k], psqt[k]);
|
|
}
|
|
|
|
#else
|
|
|
|
for (const auto index : removed)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
entry.accumulation[j] -= weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
entry.psqtAccumulation[k] -= psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
for (const auto index : added)
|
|
{
|
|
const IndexType offset = HalfDimensions * index;
|
|
for (IndexType j = 0; j < HalfDimensions; ++j)
|
|
entry.accumulation[j] += weights[offset + j];
|
|
|
|
for (std::size_t k = 0; k < PSQTBuckets; ++k)
|
|
entry.psqtAccumulation[k] += psqtWeights[index * PSQTBuckets + k];
|
|
}
|
|
|
|
// The accumulator of the refresh entry has been updated.
|
|
// Now copy its content to the actual accumulator we were refreshing.
|
|
|
|
std::memcpy(accumulator.accumulation[Perspective], entry.accumulation,
|
|
sizeof(BiasType) * HalfDimensions);
|
|
|
|
std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation,
|
|
sizeof(int32_t) * PSQTBuckets);
|
|
#endif
|
|
|
|
for (Color c : {WHITE, BLACK})
|
|
entry.byColorBB[c] = pos.pieces(c);
|
|
|
|
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
|
entry.byTypeBB[pt] = pos.pieces(pt);
|
|
}
|
|
|
|
template<Color Perspective>
|
|
void hint_common_access_for_perspective(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
|
|
// Works like update_accumulator, but performs less work.
|
|
// Updates ONLY the accumulator for pos.
|
|
|
|
// Look for a usable accumulator of an earlier position. We keep track
|
|
// of the estimated gain in terms of features to be added/subtracted.
|
|
// Fast early exit.
|
|
if ((pos.state()->*accPtr).computed[Perspective])
|
|
return;
|
|
|
|
auto [oldest_st, _] = try_find_computed_accumulator<Perspective>(pos);
|
|
|
|
if ((oldest_st->*accPtr).computed[Perspective])
|
|
{
|
|
// Only update current position accumulator to minimize work
|
|
StateInfo* states_to_update[1] = {pos.state()};
|
|
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
|
|
}
|
|
else
|
|
update_accumulator_refresh_cache<Perspective>(pos, cache);
|
|
}
|
|
|
|
template<Color Perspective>
|
|
void update_accumulator(const Position& pos,
|
|
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
|
|
|
|
auto [oldest_st, next] = try_find_computed_accumulator<Perspective>(pos);
|
|
|
|
if ((oldest_st->*accPtr).computed[Perspective])
|
|
{
|
|
if (next == nullptr)
|
|
return;
|
|
|
|
// Now update the accumulators listed in states_to_update[], where
|
|
// the last element is a sentinel. Currently we update two accumulators:
|
|
// 1. for the current position
|
|
// 2. the next accumulator after the computed one
|
|
// The heuristic may change in the future.
|
|
if (next == pos.state())
|
|
{
|
|
StateInfo* states_to_update[1] = {next};
|
|
|
|
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
|
|
}
|
|
else
|
|
{
|
|
StateInfo* states_to_update[2] = {next, pos.state()};
|
|
|
|
update_accumulator_incremental<Perspective, 2>(pos, oldest_st, states_to_update);
|
|
}
|
|
}
|
|
else
|
|
update_accumulator_refresh_cache<Perspective>(pos, cache);
|
|
}
|
|
|
|
template<IndexType Size>
|
|
friend struct AccumulatorCaches::Cache;
|
|
|
|
alignas(CacheLineSize) BiasType biases[HalfDimensions];
|
|
alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
|
|
alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];
|
|
};
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|
|
|
|
#endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED
|