Files
Stockfish/src/nnue/nnue_feature_transformer.h
Stéphane Nicolet 7e72b37e4c Clean up comments in code
- Capitalize comments
- Reformat multi-lines comments to equalize the widths of the lines
- Try to keep the width of comments around 85 characters
- Remove periods at the end of single-line comments

closes https://github.com/official-stockfish/Stockfish/pull/5469

No functional change
2024-07-11 07:29:33 +02:00

888 lines
36 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// A class that converts the input features of the NNUE evaluation function
#ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED
#define NNUE_FEATURE_TRANSFORMER_H_INCLUDED
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <utility>
#include "../position.h"
#include "../types.h"
#include "nnue_accumulator.h"
#include "nnue_architecture.h"
#include "nnue_common.h"
namespace Stockfish::Eval::NNUE {
using BiasType = std::int16_t;
using WeightType = std::int16_t;
using PSQTWeightType = std::int32_t;
// If vector instructions are enabled, we update and refresh the
// accumulator tile by tile such that each tile fits in the CPU's
// vector registers.
#define VECTOR
static_assert(PSQTBuckets % 8 == 0,
"Per feature PSQT values cannot be processed at granularity lower than 8 at a time.");
#ifdef USE_AVX512
using vec_t = __m512i;
using psqt_vec_t = __m256i;
#define vec_load(a) _mm512_load_si512(a)
#define vec_store(a, b) _mm512_store_si512(a, b)
#define vec_add_16(a, b) _mm512_add_epi16(a, b)
#define vec_sub_16(a, b) _mm512_sub_epi16(a, b)
#define vec_mulhi_16(a, b) _mm512_mulhi_epi16(a, b)
#define vec_zero() _mm512_setzero_epi32()
#define vec_set_16(a) _mm512_set1_epi16(a)
#define vec_max_16(a, b) _mm512_max_epi16(a, b)
#define vec_min_16(a, b) _mm512_min_epi16(a, b)
#define vec_slli_16(a, b) _mm512_slli_epi16(a, b)
// Inverse permuted at load time
#define vec_packus_16(a, b) _mm512_packus_epi16(a, b)
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 16
#define MaxChunkSize 64
#elif USE_AVX2
using vec_t = __m256i;
using psqt_vec_t = __m256i;
#define vec_load(a) _mm256_load_si256(a)
#define vec_store(a, b) _mm256_store_si256(a, b)
#define vec_add_16(a, b) _mm256_add_epi16(a, b)
#define vec_sub_16(a, b) _mm256_sub_epi16(a, b)
#define vec_mulhi_16(a, b) _mm256_mulhi_epi16(a, b)
#define vec_zero() _mm256_setzero_si256()
#define vec_set_16(a) _mm256_set1_epi16(a)
#define vec_max_16(a, b) _mm256_max_epi16(a, b)
#define vec_min_16(a, b) _mm256_min_epi16(a, b)
#define vec_slli_16(a, b) _mm256_slli_epi16(a, b)
// Inverse permuted at load time
#define vec_packus_16(a, b) _mm256_packus_epi16(a, b)
#define vec_load_psqt(a) _mm256_load_si256(a)
#define vec_store_psqt(a, b) _mm256_store_si256(a, b)
#define vec_add_psqt_32(a, b) _mm256_add_epi32(a, b)
#define vec_sub_psqt_32(a, b) _mm256_sub_epi32(a, b)
#define vec_zero_psqt() _mm256_setzero_si256()
#define NumRegistersSIMD 16
#define MaxChunkSize 32
#elif USE_SSE2
using vec_t = __m128i;
using psqt_vec_t = __m128i;
#define vec_load(a) (*(a))
#define vec_store(a, b) *(a) = (b)
#define vec_add_16(a, b) _mm_add_epi16(a, b)
#define vec_sub_16(a, b) _mm_sub_epi16(a, b)
#define vec_mulhi_16(a, b) _mm_mulhi_epi16(a, b)
#define vec_zero() _mm_setzero_si128()
#define vec_set_16(a) _mm_set1_epi16(a)
#define vec_max_16(a, b) _mm_max_epi16(a, b)
#define vec_min_16(a, b) _mm_min_epi16(a, b)
#define vec_slli_16(a, b) _mm_slli_epi16(a, b)
#define vec_packus_16(a, b) _mm_packus_epi16(a, b)
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a, b) *(a) = (b)
#define vec_add_psqt_32(a, b) _mm_add_epi32(a, b)
#define vec_sub_psqt_32(a, b) _mm_sub_epi32(a, b)
#define vec_zero_psqt() _mm_setzero_si128()
#define NumRegistersSIMD (Is64Bit ? 16 : 8)
#define MaxChunkSize 16
#elif USE_NEON
using vec_t = int16x8_t;
using psqt_vec_t = int32x4_t;
#define vec_load(a) (*(a))
#define vec_store(a, b) *(a) = (b)
#define vec_add_16(a, b) vaddq_s16(a, b)
#define vec_sub_16(a, b) vsubq_s16(a, b)
#define vec_mulhi_16(a, b) vqdmulhq_s16(a, b)
#define vec_zero() \
vec_t { 0 }
#define vec_set_16(a) vdupq_n_s16(a)
#define vec_max_16(a, b) vmaxq_s16(a, b)
#define vec_min_16(a, b) vminq_s16(a, b)
#define vec_slli_16(a, b) vshlq_s16(a, vec_set_16(b))
#define vec_packus_16(a, b) reinterpret_cast<vec_t>(vcombine_u8(vqmovun_s16(a), vqmovun_s16(b)))
#define vec_load_psqt(a) (*(a))
#define vec_store_psqt(a, b) *(a) = (b)
#define vec_add_psqt_32(a, b) vaddq_s32(a, b)
#define vec_sub_psqt_32(a, b) vsubq_s32(a, b)
#define vec_zero_psqt() \
psqt_vec_t { 0 }
#define NumRegistersSIMD 16
#define MaxChunkSize 16
#else
#undef VECTOR
#endif
#ifdef VECTOR
// Compute optimal SIMD register count for feature transformer accumulation.
// We use __m* types as template arguments, which causes GCC to emit warnings
// about losing some attribute information. This is irrelevant to us as we
// only take their size, so the following pragma are harmless.
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
template<typename SIMDRegisterType, typename LaneType, int NumLanes, int MaxRegisters>
static constexpr int BestRegisterCount() {
#define RegisterSize sizeof(SIMDRegisterType)
#define LaneSize sizeof(LaneType)
static_assert(RegisterSize >= LaneSize);
static_assert(MaxRegisters <= NumRegistersSIMD);
static_assert(MaxRegisters > 0);
static_assert(NumRegistersSIMD > 0);
static_assert(RegisterSize % LaneSize == 0);
static_assert((NumLanes * LaneSize) % RegisterSize == 0);
const int ideal = (NumLanes * LaneSize) / RegisterSize;
if (ideal <= MaxRegisters)
return ideal;
// Look for the largest divisor of the ideal register count that is smaller than MaxRegisters
for (int divisor = MaxRegisters; divisor > 1; --divisor)
if (ideal % divisor == 0)
return divisor;
return 1;
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#endif
// Input feature converter
template<IndexType TransformedFeatureDimensions,
Accumulator<TransformedFeatureDimensions> StateInfo::*accPtr>
class FeatureTransformer {
// Number of output dimensions for one side
static constexpr IndexType HalfDimensions = TransformedFeatureDimensions;
private:
#ifdef VECTOR
static constexpr int NumRegs =
BestRegisterCount<vec_t, WeightType, TransformedFeatureDimensions, NumRegistersSIMD>();
static constexpr int NumPsqtRegs =
BestRegisterCount<psqt_vec_t, PSQTWeightType, PSQTBuckets, NumRegistersSIMD>();
static constexpr IndexType TileHeight = NumRegs * sizeof(vec_t) / 2;
static constexpr IndexType PsqtTileHeight = NumPsqtRegs * sizeof(psqt_vec_t) / 4;
static_assert(HalfDimensions % TileHeight == 0, "TileHeight must divide HalfDimensions");
static_assert(PSQTBuckets % PsqtTileHeight == 0, "PsqtTileHeight must divide PSQTBuckets");
#endif
public:
// Output type
using OutputType = TransformedFeatureType;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = FeatureSet::Dimensions;
static constexpr IndexType OutputDimensions = HalfDimensions;
// Size of forward propagation buffer
static constexpr std::size_t BufferSize = OutputDimensions * sizeof(OutputType);
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
return FeatureSet::HashValue ^ (OutputDimensions * 2);
}
static constexpr void order_packs([[maybe_unused]] uint64_t* v) {
#if defined(USE_AVX512) // _mm512_packs_epi16 ordering
uint64_t tmp0 = v[2], tmp1 = v[3];
v[2] = v[8], v[3] = v[9];
v[8] = v[4], v[9] = v[5];
v[4] = tmp0, v[5] = tmp1;
tmp0 = v[6], tmp1 = v[7];
v[6] = v[10], v[7] = v[11];
v[10] = v[12], v[11] = v[13];
v[12] = tmp0, v[13] = tmp1;
#elif defined(USE_AVX2) // _mm256_packs_epi16 ordering
std::swap(v[2], v[4]);
std::swap(v[3], v[5]);
#endif
}
static constexpr void inverse_order_packs([[maybe_unused]] uint64_t* v) {
#if defined(USE_AVX512) // Inverse _mm512_packs_epi16 ordering
uint64_t tmp0 = v[2], tmp1 = v[3];
v[2] = v[4], v[3] = v[5];
v[4] = v[8], v[5] = v[9];
v[8] = tmp0, v[9] = tmp1;
tmp0 = v[6], tmp1 = v[7];
v[6] = v[12], v[7] = v[13];
v[12] = v[10], v[13] = v[11];
v[10] = tmp0, v[11] = tmp1;
#elif defined(USE_AVX2) // Inverse _mm256_packs_epi16 ordering
std::swap(v[2], v[4]);
std::swap(v[3], v[5]);
#endif
}
void permute_weights([[maybe_unused]] void (*order_fn)(uint64_t*)) const {
#if defined(USE_AVX2)
#if defined(USE_AVX512)
constexpr IndexType di = 16;
#else
constexpr IndexType di = 8;
#endif
uint64_t* b = reinterpret_cast<uint64_t*>(const_cast<BiasType*>(&biases[0]));
for (IndexType i = 0; i < HalfDimensions * sizeof(BiasType) / sizeof(uint64_t); i += di)
order_fn(&b[i]);
for (IndexType j = 0; j < InputDimensions; ++j)
{
uint64_t* w =
reinterpret_cast<uint64_t*>(const_cast<WeightType*>(&weights[j * HalfDimensions]));
for (IndexType i = 0; i < HalfDimensions * sizeof(WeightType) / sizeof(uint64_t);
i += di)
order_fn(&w[i]);
}
#endif
}
inline void scale_weights(bool read) const {
for (IndexType j = 0; j < InputDimensions; ++j)
{
WeightType* w = const_cast<WeightType*>(&weights[j * HalfDimensions]);
for (IndexType i = 0; i < HalfDimensions; ++i)
w[i] = read ? w[i] * 2 : w[i] / 2;
}
BiasType* b = const_cast<BiasType*>(biases);
for (IndexType i = 0; i < HalfDimensions; ++i)
b[i] = read ? b[i] * 2 : b[i] / 2;
}
// Read network parameters
bool read_parameters(std::istream& stream) {
read_leb_128<BiasType>(stream, biases, HalfDimensions);
read_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
read_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
permute_weights(inverse_order_packs);
scale_weights(true);
return !stream.fail();
}
// Write network parameters
bool write_parameters(std::ostream& stream) const {
permute_weights(order_packs);
scale_weights(false);
write_leb_128<BiasType>(stream, biases, HalfDimensions);
write_leb_128<WeightType>(stream, weights, HalfDimensions * InputDimensions);
write_leb_128<PSQTWeightType>(stream, psqtWeights, PSQTBuckets * InputDimensions);
permute_weights(inverse_order_packs);
scale_weights(true);
return !stream.fail();
}
// Convert input features
std::int32_t transform(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache,
OutputType* output,
int bucket) const {
update_accumulator<WHITE>(pos, cache);
update_accumulator<BLACK>(pos, cache);
const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()};
const auto& psqtAccumulation = (pos.state()->*accPtr).psqtAccumulation;
const auto psqt =
(psqtAccumulation[perspectives[0]][bucket] - psqtAccumulation[perspectives[1]][bucket])
/ 2;
const auto& accumulation = (pos.state()->*accPtr).accumulation;
for (IndexType p = 0; p < 2; ++p)
{
const IndexType offset = (HalfDimensions / 2) * p;
#if defined(VECTOR)
constexpr IndexType OutputChunkSize = MaxChunkSize;
static_assert((HalfDimensions / 2) % OutputChunkSize == 0);
constexpr IndexType NumOutputChunks = HalfDimensions / 2 / OutputChunkSize;
const vec_t Zero = vec_zero();
const vec_t One = vec_set_16(127 * 2);
const vec_t* in0 = reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][0]));
const vec_t* in1 =
reinterpret_cast<const vec_t*>(&(accumulation[perspectives[p]][HalfDimensions / 2]));
vec_t* out = reinterpret_cast<vec_t*>(output + offset);
for (IndexType j = 0; j < NumOutputChunks; ++j)
{
// What we want to do is multiply inputs in a pairwise manner
// (after clipping), and then shift right by 9. Instead, we
// shift left by 7, and use mulhi, stripping the bottom 16 bits,
// effectively shifting right by 16, resulting in a net shift
// of 9 bits. We use mulhi because it maintains the sign of
// the multiplication (unlike mullo), allowing us to make use
// of packus to clip 2 of the inputs, resulting in a save of 2
// "vec_max_16" calls. A special case is when we use NEON,
// where we shift left by 6 instead, because the instruction
// "vqdmulhq_s16" also doubles the return value after the
// multiplication, adding an extra shift to the left by 1, so
// we compensate by shifting less before the multiplication.
#if defined(USE_SSE2)
constexpr int shift = 7;
#else
constexpr int shift = 6;
#endif
const vec_t sum0a =
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 0], One), Zero), shift);
const vec_t sum0b =
vec_slli_16(vec_max_16(vec_min_16(in0[j * 2 + 1], One), Zero), shift);
const vec_t sum1a = vec_min_16(in1[j * 2 + 0], One);
const vec_t sum1b = vec_min_16(in1[j * 2 + 1], One);
const vec_t pa = vec_mulhi_16(sum0a, sum1a);
const vec_t pb = vec_mulhi_16(sum0b, sum1b);
out[j] = vec_packus_16(pa, pb);
}
#else
for (IndexType j = 0; j < HalfDimensions / 2; ++j)
{
BiasType sum0 = accumulation[static_cast<int>(perspectives[p])][j + 0];
BiasType sum1 =
accumulation[static_cast<int>(perspectives[p])][j + HalfDimensions / 2];
sum0 = std::clamp<BiasType>(sum0, 0, 127 * 2);
sum1 = std::clamp<BiasType>(sum1, 0, 127 * 2);
output[offset + j] = static_cast<OutputType>(unsigned(sum0 * sum1) / 512);
}
#endif
}
return psqt;
} // end of function transform()
void hint_common_access(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
hint_common_access_for_perspective<WHITE>(pos, cache);
hint_common_access_for_perspective<BLACK>(pos, cache);
}
private:
template<Color Perspective>
[[nodiscard]] std::pair<StateInfo*, StateInfo*>
try_find_computed_accumulator(const Position& pos) const {
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
StateInfo *st = pos.state(), *next = nullptr;
int gain = FeatureSet::refresh_cost(pos);
while (st->previous && !(st->*accPtr).computed[Perspective])
{
// This governs when a full feature refresh is needed and how many
// updates are better than just one full refresh.
if (FeatureSet::requires_refresh(st, Perspective)
|| (gain -= FeatureSet::update_cost(st) + 1) < 0)
break;
next = st;
st = st->previous;
}
return {st, next};
}
// NOTE: The parameter states_to_update is an array of position states.
// All states must be sequential, that is states_to_update[i] must
// either be reachable by repeatedly applying ->previous from
// states_to_update[i+1], and computed_st must be reachable by
// repeatedly applying ->previous on states_to_update[0].
template<Color Perspective, size_t N>
void update_accumulator_incremental(const Position& pos,
StateInfo* computed_st,
StateInfo* states_to_update[N]) const {
static_assert(N > 0);
assert([&]() {
for (size_t i = 0; i < N; ++i)
{
if (states_to_update[i] == nullptr)
return false;
}
return true;
}());
#ifdef VECTOR
// Gcc-10.2 unnecessarily spills AVX2 registers if this array
// is defined in the VECTOR code below, once in each branch.
vec_t acc[NumRegs];
psqt_vec_t psqt[NumPsqtRegs];
#endif
// Update incrementally going back through states_to_update.
// Gather all features to be updated.
const Square ksq = pos.square<KING>(Perspective);
// The size must be enough to contain the largest possible update.
// That might depend on the feature set and generally relies on the
// feature set's update cost calculation to be correct and never allow
// updates with more added/removed features than MaxActiveDimensions.
FeatureSet::IndexList removed[N], added[N];
for (int i = N - 1; i >= 0; --i)
{
(states_to_update[i]->*accPtr).computed[Perspective] = true;
const StateInfo* end_state = i == 0 ? computed_st : states_to_update[i - 1];
for (StateInfo* st2 = states_to_update[i]; st2 != end_state; st2 = st2->previous)
FeatureSet::append_changed_indices<Perspective>(ksq, st2->dirtyPiece, removed[i],
added[i]);
}
StateInfo* st = computed_st;
// Now update the accumulators listed in states_to_update[],
// where the last element is a sentinel.
#ifdef VECTOR
if (N == 1 && (removed[0].size() == 1 || removed[0].size() == 2) && added[0].size() == 1)
{
assert(states_to_update[0]);
auto accIn =
reinterpret_cast<const vec_t*>(&(st->*accPtr).accumulation[Perspective][0]);
auto accOut = reinterpret_cast<vec_t*>(
&(states_to_update[0]->*accPtr).accumulation[Perspective][0]);
const IndexType offsetR0 = HalfDimensions * removed[0][0];
auto columnR0 = reinterpret_cast<const vec_t*>(&weights[offsetR0]);
const IndexType offsetA = HalfDimensions * added[0][0];
auto columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
if (removed[0].size() == 1)
{
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
++k)
accOut[k] = vec_add_16(vec_sub_16(accIn[k], columnR0[k]), columnA[k]);
}
else
{
const IndexType offsetR1 = HalfDimensions * removed[0][1];
auto columnR1 = reinterpret_cast<const vec_t*>(&weights[offsetR1]);
for (IndexType k = 0; k < HalfDimensions * sizeof(std::int16_t) / sizeof(vec_t);
++k)
accOut[k] = vec_sub_16(vec_add_16(accIn[k], columnA[k]),
vec_add_16(columnR0[k], columnR1[k]));
}
auto accPsqtIn =
reinterpret_cast<const psqt_vec_t*>(&(st->*accPtr).psqtAccumulation[Perspective][0]);
auto accPsqtOut = reinterpret_cast<psqt_vec_t*>(
&(states_to_update[0]->*accPtr).psqtAccumulation[Perspective][0]);
const IndexType offsetPsqtR0 = PSQTBuckets * removed[0][0];
auto columnPsqtR0 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR0]);
const IndexType offsetPsqtA = PSQTBuckets * added[0][0];
auto columnPsqtA = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtA]);
if (removed[0].size() == 1)
{
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
++k)
accPsqtOut[k] = vec_add_psqt_32(vec_sub_psqt_32(accPsqtIn[k], columnPsqtR0[k]),
columnPsqtA[k]);
}
else
{
const IndexType offsetPsqtR1 = PSQTBuckets * removed[0][1];
auto columnPsqtR1 = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offsetPsqtR1]);
for (std::size_t k = 0; k < PSQTBuckets * sizeof(std::int32_t) / sizeof(psqt_vec_t);
++k)
accPsqtOut[k] =
vec_sub_psqt_32(vec_add_psqt_32(accPsqtIn[k], columnPsqtA[k]),
vec_add_psqt_32(columnPsqtR0[k], columnPsqtR1[k]));
}
}
else
{
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
// Load accumulator
auto accTileIn = reinterpret_cast<const vec_t*>(
&(st->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_load(&accTileIn[k]);
for (IndexType i = 0; i < N; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_sub_16(acc[k], column[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
// Store accumulator
auto accTileOut = reinterpret_cast<vec_t*>(
&(states_to_update[i]->*accPtr).accumulation[Perspective][j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_store(&accTileOut[k], acc[k]);
}
}
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
// Load accumulator
auto accTilePsqtIn = reinterpret_cast<const psqt_vec_t*>(
&(st->*accPtr).psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_load_psqt(&accTilePsqtIn[k]);
for (IndexType i = 0; i < N; ++i)
{
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
// Store accumulator
auto accTilePsqtOut = reinterpret_cast<psqt_vec_t*>(
&(states_to_update[i]->*accPtr)
.psqtAccumulation[Perspective][j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqtOut[k], psqt[k]);
}
}
}
#else
for (IndexType i = 0; i < N; ++i)
{
std::memcpy((states_to_update[i]->*accPtr).accumulation[Perspective],
(st->*accPtr).accumulation[Perspective], HalfDimensions * sizeof(BiasType));
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(states_to_update[i]->*accPtr).psqtAccumulation[Perspective][k] =
(st->*accPtr).psqtAccumulation[Perspective][k];
st = states_to_update[i];
// Difference calculation for the deactivated features
for (const auto index : removed[i])
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
(st->*accPtr).accumulation[Perspective][j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(st->*accPtr).psqtAccumulation[Perspective][k] -=
psqtWeights[index * PSQTBuckets + k];
}
// Difference calculation for the activated features
for (const auto index : added[i])
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
(st->*accPtr).accumulation[Perspective][j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
(st->*accPtr).psqtAccumulation[Perspective][k] +=
psqtWeights[index * PSQTBuckets + k];
}
}
#endif
}
template<Color Perspective>
void update_accumulator_refresh_cache(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
assert(cache != nullptr);
Square ksq = pos.square<KING>(Perspective);
auto& entry = (*cache)[ksq][Perspective];
FeatureSet::IndexList removed, added;
for (Color c : {WHITE, BLACK})
{
for (PieceType pt = PAWN; pt <= KING; ++pt)
{
const Piece piece = make_piece(c, pt);
const Bitboard oldBB = entry.byColorBB[c] & entry.byTypeBB[pt];
const Bitboard newBB = pos.pieces(c, pt);
Bitboard toRemove = oldBB & ~newBB;
Bitboard toAdd = newBB & ~oldBB;
while (toRemove)
{
Square sq = pop_lsb(toRemove);
removed.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
}
while (toAdd)
{
Square sq = pop_lsb(toAdd);
added.push_back(FeatureSet::make_index<Perspective>(sq, piece, ksq));
}
}
}
auto& accumulator = pos.state()->*accPtr;
accumulator.computed[Perspective] = true;
#ifdef VECTOR
vec_t acc[NumRegs];
psqt_vec_t psqt[NumPsqtRegs];
for (IndexType j = 0; j < HalfDimensions / TileHeight; ++j)
{
auto accTile =
reinterpret_cast<vec_t*>(&accumulator.accumulation[Perspective][j * TileHeight]);
auto entryTile = reinterpret_cast<vec_t*>(&entry.accumulation[j * TileHeight]);
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = entryTile[k];
int i = 0;
for (; i < int(std::min(removed.size(), added.size())); ++i)
{
IndexType indexR = removed[i];
const IndexType offsetR = HalfDimensions * indexR + j * TileHeight;
auto columnR = reinterpret_cast<const vec_t*>(&weights[offsetR]);
IndexType indexA = added[i];
const IndexType offsetA = HalfDimensions * indexA + j * TileHeight;
auto columnA = reinterpret_cast<const vec_t*>(&weights[offsetA]);
for (unsigned k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], vec_sub_16(columnA[k], columnR[k]));
}
for (; i < int(removed.size()); ++i)
{
IndexType index = removed[i];
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (unsigned k = 0; k < NumRegs; ++k)
acc[k] = vec_sub_16(acc[k], column[k]);
}
for (; i < int(added.size()); ++i)
{
IndexType index = added[i];
const IndexType offset = HalfDimensions * index + j * TileHeight;
auto column = reinterpret_cast<const vec_t*>(&weights[offset]);
for (unsigned k = 0; k < NumRegs; ++k)
acc[k] = vec_add_16(acc[k], column[k]);
}
for (IndexType k = 0; k < NumRegs; k++)
vec_store(&entryTile[k], acc[k]);
for (IndexType k = 0; k < NumRegs; k++)
vec_store(&accTile[k], acc[k]);
}
for (IndexType j = 0; j < PSQTBuckets / PsqtTileHeight; ++j)
{
auto accTilePsqt = reinterpret_cast<psqt_vec_t*>(
&accumulator.psqtAccumulation[Perspective][j * PsqtTileHeight]);
auto entryTilePsqt =
reinterpret_cast<psqt_vec_t*>(&entry.psqtAccumulation[j * PsqtTileHeight]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = entryTilePsqt[k];
for (int i = 0; i < int(removed.size()); ++i)
{
IndexType index = removed[i];
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_sub_psqt_32(psqt[k], columnPsqt[k]);
}
for (int i = 0; i < int(added.size()); ++i)
{
IndexType index = added[i];
const IndexType offset = PSQTBuckets * index + j * PsqtTileHeight;
auto columnPsqt = reinterpret_cast<const psqt_vec_t*>(&psqtWeights[offset]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
psqt[k] = vec_add_psqt_32(psqt[k], columnPsqt[k]);
}
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&entryTilePsqt[k], psqt[k]);
for (std::size_t k = 0; k < NumPsqtRegs; ++k)
vec_store_psqt(&accTilePsqt[k], psqt[k]);
}
#else
for (const auto index : removed)
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
entry.accumulation[j] -= weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
entry.psqtAccumulation[k] -= psqtWeights[index * PSQTBuckets + k];
}
for (const auto index : added)
{
const IndexType offset = HalfDimensions * index;
for (IndexType j = 0; j < HalfDimensions; ++j)
entry.accumulation[j] += weights[offset + j];
for (std::size_t k = 0; k < PSQTBuckets; ++k)
entry.psqtAccumulation[k] += psqtWeights[index * PSQTBuckets + k];
}
// The accumulator of the refresh entry has been updated.
// Now copy its content to the actual accumulator we were refreshing.
std::memcpy(accumulator.accumulation[Perspective], entry.accumulation,
sizeof(BiasType) * HalfDimensions);
std::memcpy(accumulator.psqtAccumulation[Perspective], entry.psqtAccumulation,
sizeof(int32_t) * PSQTBuckets);
#endif
for (Color c : {WHITE, BLACK})
entry.byColorBB[c] = pos.pieces(c);
for (PieceType pt = PAWN; pt <= KING; ++pt)
entry.byTypeBB[pt] = pos.pieces(pt);
}
template<Color Perspective>
void hint_common_access_for_perspective(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
// Works like update_accumulator, but performs less work.
// Updates ONLY the accumulator for pos.
// Look for a usable accumulator of an earlier position. We keep track
// of the estimated gain in terms of features to be added/subtracted.
// Fast early exit.
if ((pos.state()->*accPtr).computed[Perspective])
return;
auto [oldest_st, _] = try_find_computed_accumulator<Perspective>(pos);
if ((oldest_st->*accPtr).computed[Perspective])
{
// Only update current position accumulator to minimize work
StateInfo* states_to_update[1] = {pos.state()};
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
}
else
update_accumulator_refresh_cache<Perspective>(pos, cache);
}
template<Color Perspective>
void update_accumulator(const Position& pos,
AccumulatorCaches::Cache<HalfDimensions>* cache) const {
auto [oldest_st, next] = try_find_computed_accumulator<Perspective>(pos);
if ((oldest_st->*accPtr).computed[Perspective])
{
if (next == nullptr)
return;
// Now update the accumulators listed in states_to_update[], where
// the last element is a sentinel. Currently we update two accumulators:
// 1. for the current position
// 2. the next accumulator after the computed one
// The heuristic may change in the future.
if (next == pos.state())
{
StateInfo* states_to_update[1] = {next};
update_accumulator_incremental<Perspective, 1>(pos, oldest_st, states_to_update);
}
else
{
StateInfo* states_to_update[2] = {next, pos.state()};
update_accumulator_incremental<Perspective, 2>(pos, oldest_st, states_to_update);
}
}
else
update_accumulator_refresh_cache<Perspective>(pos, cache);
}
template<IndexType Size>
friend struct AccumulatorCaches::Cache;
alignas(CacheLineSize) BiasType biases[HalfDimensions];
alignas(CacheLineSize) WeightType weights[HalfDimensions * InputDimensions];
alignas(CacheLineSize) PSQTWeightType psqtWeights[InputDimensions * PSQTBuckets];
};
} // namespace Stockfish::Eval::NNUE
#endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED