Files
Stockfish/src/bitboard.cpp
Marco Costalba 76622342ec Restore MS1BTable[]
Incredible typo from my side!

The 2 tables are completely different, one counts 1s the
other returns the msb position. Even more incredible
the 'stockfish bench' command returns the same number
of nodes!!!

Spotted by Justin Blanchard.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2012-03-28 19:11:37 +01:00

379 lines
11 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cstring>
#include <iostream>
#include "bitboard.h"
#include "bitcount.h"
#include "rkiss.h"
CACHE_LINE_ALIGNMENT
Bitboard RMasks[64];
Bitboard RMagics[64];
Bitboard* RAttacks[64];
unsigned RShifts[64];
Bitboard BMasks[64];
Bitboard BMagics[64];
Bitboard* BAttacks[64];
unsigned BShifts[64];
Bitboard SquareBB[64];
Bitboard FileBB[8];
Bitboard RankBB[8];
Bitboard AdjacentFilesBB[8];
Bitboard ThisAndAdjacentFilesBB[8];
Bitboard InFrontBB[2][8];
Bitboard StepAttacksBB[16][64];
Bitboard BetweenBB[64][64];
Bitboard SquaresInFrontMask[2][64];
Bitboard PassedPawnMask[2][64];
Bitboard AttackSpanMask[2][64];
Bitboard PseudoAttacks[6][64];
uint8_t BitCount8Bit[256];
int SquareDistance[64][64];
namespace {
CACHE_LINE_ALIGNMENT
int BSFTable[64];
int MS1BTable[256];
Bitboard RTable[0x19000]; // Storage space for rook attacks
Bitboard BTable[0x1480]; // Storage space for bishop attacks
typedef unsigned (Fn)(Square, Bitboard);
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
}
/// print_bitboard() prints a bitboard in an easily readable format to the
/// standard output. This is sometimes useful for debugging.
void print_bitboard(Bitboard b) {
for (Rank r = RANK_8; r >= RANK_1; r--)
{
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
for (File f = FILE_A; f <= FILE_H; f++)
std::cout << "| " << ((b & make_square(f, r)) ? "X " : " ");
std::cout << "|\n";
}
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
}
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
/// nonzero bitboard.
#if defined(IS_64BIT) && !defined(USE_BSFQ)
Square first_1(Bitboard b) {
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
}
Square pop_1st_bit(Bitboard* b) {
Bitboard bb = *b;
*b &= (*b - 1);
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
}
#elif !defined(USE_BSFQ)
Square first_1(Bitboard b) {
b ^= (b - 1);
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
}
// Use type-punning
union b_union {
Bitboard dummy;
struct {
#if defined (BIGENDIAN)
uint32_t h;
uint32_t l;
#else
uint32_t l;
uint32_t h;
#endif
} b;
};
Square pop_1st_bit(Bitboard* b) {
const b_union u = *((b_union*)b);
if (u.b.l)
{
((b_union*)b)->b.l = u.b.l & (u.b.l - 1);
return Square(BSFTable[((u.b.l ^ (u.b.l - 1)) * 0x783A9B23) >> 26]);
}
((b_union*)b)->b.h = u.b.h & (u.b.h - 1);
return Square(BSFTable[((~(u.b.h ^ (u.b.h - 1))) * 0x783A9B23) >> 26]);
}
Square last_1(Bitboard b) {
int result = 0;
if (b > 0xFFFFFFFF)
{
b >>= 32;
result = 32;
}
if (b > 0xFFFF)
{
b >>= 16;
result += 16;
}
if (b > 0xFF)
{
b >>= 8;
result += 8;
}
return Square(result + MS1BTable[b]);
}
#endif // !defined(USE_BSFQ)
/// bitboards_init() initializes various bitboard arrays. It is called during
/// program initialization.
void bitboards_init() {
for (int k = 0, i = 0; i < 8; i++)
while (k < (2 << i))
MS1BTable[k++] = i;
for (Bitboard b = 0; b < 256; b++)
BitCount8Bit[b] = (uint8_t)popcount<Max15>(b);
for (Square s = SQ_A1; s <= SQ_H8; s++)
SquareBB[s] = 1ULL << s;
FileBB[FILE_A] = FileABB;
RankBB[RANK_1] = Rank1BB;
for (int f = FILE_B; f <= FILE_H; f++)
{
FileBB[f] = FileBB[f - 1] << 1;
RankBB[f] = RankBB[f - 1] << 8;
}
for (int f = FILE_A; f <= FILE_H; f++)
{
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f];
}
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
{
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
}
for (Color c = WHITE; c <= BLACK; c++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(file_of(s));
AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(file_of(s));
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
for (int i = 0; i < 64; i++)
if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems
{
Bitboard b = 1ULL << i;
b ^= b - 1;
b ^= b >> 32;
BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i;
}
else
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
for (int k = 0; steps[pt][k]; k++)
{
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
if (square_is_ok(to) && square_distance(s, to) < 3)
StepAttacksBB[make_piece(c, pt)][s] |= to;
}
Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index<ROOK>);
init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index<BISHOP>);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
PseudoAttacks[BISHOP][s] = attacks_bb<BISHOP>(s, 0);
PseudoAttacks[ROOK][s] = attacks_bb<ROOK>(s, 0);
PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] | PseudoAttacks[ROOK][s];
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
if (PseudoAttacks[QUEEN][s1] & s2)
{
Square delta = (s2 - s1) / square_distance(s1, s2);
for (Square s = s1 + delta; s != s2; s += delta)
BetweenBB[s1][s2] |= s;
}
}
namespace {
Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
Bitboard attack = 0;
for (int i = 0; i < 4; i++)
for (Square s = sq + deltas[i];
square_is_ok(s) && square_distance(s, s - deltas[i]) == 1;
s += deltas[i])
{
attack |= s;
if (occupied & s)
break;
}
return attack;
}
Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
Bitboard magic;
// Values s1 and s2 are used to rotate the candidate magic of a
// quantity known to be the optimal to quickly find the magics.
int s1 = booster & 63, s2 = (booster >> 6) & 63;
while (true)
{
magic = rk.rand<Bitboard>();
magic = (magic >> s1) | (magic << (64 - s1));
magic &= rk.rand<Bitboard>();
magic = (magic >> s2) | (magic << (64 - s2));
magic &= rk.rand<Bitboard>();
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
return magic;
}
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
// use the so called "fancy" approach.
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
RKISS rk;
Bitboard occupancy[4096], reference[4096], edges, b;
int i, size, booster;
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
attacks[SQ_A1] = table;
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
// Board edges are not considered in the relevant occupancies
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
masks[s] = sliding_attack(deltas, s, 0) & ~edges;
shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
b = size = 0;
do {
occupancy[size] = b;
reference[size++] = sliding_attack(deltas, s, b);
b = (b - masks[s]) & masks[s];
} while (b);
// Set the offset for the table of the next square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
if (s < SQ_H8)
attacks[s + 1] = attacks[s] + size;
booster = MagicBoosters[Is64Bit][rank_of(s)];
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
do {
magics[s] = pick_random(masks[s], rk, booster);
memset(attacks[s], 0, size * sizeof(Bitboard));
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic.
for (i = 0; i < size; i++)
{
Bitboard& attack = attacks[s][index(s, occupancy[i])];
if (attack && attack != reference[i])
break;
attack = reference[i];
}
} while (i != size);
}
}
}