Files
Stockfish/src/nnue/trainer/features/factorizer.h

118 lines
3.8 KiB
C++

#ifndef _NNUE_TRAINER_FEATURES_FACTORIZER_H_
#define _NNUE_TRAINER_FEATURES_FACTORIZER_H_
#include "nnue/nnue_common.h"
#include "nnue/trainer/trainer.h"
// NNUE evaluation function feature conversion class template
namespace Eval::NNUE::Features {
// Class template that converts input features into learning features
// By default, the learning feature is the same as the original input feature, and specialized as necessary
template <typename FeatureType>
class Factorizer {
public:
static constexpr std::string get_name() {
return "Factorizer<" + FeatureType::get_name() + "> -> " + std::string("No factorizer");
}
static constexpr std::string get_factorizers_string() {
return " - " + get_name();
}
// Get the dimensionality of the learning feature
static constexpr IndexType get_dimensions() {
return FeatureType::kDimensions;
}
// Get index of learning feature and scale of learning rate
static void append_training_features(
IndexType base_index, std::vector<TrainingFeature>* training_features) {
assert(base_index <FeatureType::kDimensions);
training_features->emplace_back(base_index);
}
};
// Learning feature information
struct FeatureProperties {
bool active;
IndexType dimensions;
};
// Add the original input features to the learning features
template <typename FeatureType>
IndexType append_base_feature(
FeatureProperties properties, IndexType base_index,
std::vector<TrainingFeature>* training_features) {
assert(properties.dimensions == FeatureType::kDimensions);
assert(base_index < FeatureType::kDimensions);
training_features->emplace_back(base_index);
return properties.dimensions;
}
// If the learning rate scale is not 0, inherit other types of learning features
template <typename FeatureType>
IndexType inherit_features_if_required(
IndexType index_offset, FeatureProperties properties, IndexType base_index,
std::vector<TrainingFeature>* training_features) {
if (!properties.active) {
return 0;
}
assert(properties.dimensions == Factorizer<FeatureType>::get_dimensions());
assert(base_index < FeatureType::kDimensions);
const auto start = training_features->size();
Factorizer<FeatureType>::append_training_features(
base_index, training_features);
for (auto i = start; i < training_features->size(); ++i) {
auto& feature = (*training_features)[i];
assert(feature.get_index() < Factorizer<FeatureType>::get_dimensions());
feature.shift_index(index_offset);
}
return properties.dimensions;
}
// Return the index difference as needed, without adding learning features
// Call instead of InheritFeaturesIfRequired() if there are no corresponding features
IndexType skip_features(FeatureProperties properties) {
if (!properties.active)
return 0;
return properties.dimensions;
}
// Get the dimensionality of the learning feature
template <std::size_t N>
constexpr IndexType get_active_dimensions(
const FeatureProperties (&properties)[N]) {
static_assert(N > 0, "");
IndexType dimensions = properties[0].dimensions;
for (std::size_t i = 1; i < N; ++i) {
if (properties[i].active) {
dimensions += properties[i].dimensions;
}
}
return dimensions;
}
// get the number of elements in the array
template <typename T, std::size_t N>
constexpr std::size_t get_array_length(const T (&/*array*/)[N]) {
return N;
}
} // namespace Eval::NNUE::Features
#endif