mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-17 23:56:23 +08:00
360 lines
10 KiB
C++
360 lines
10 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <cstring>
|
|
#include <iostream>
|
|
|
|
#include "bitboard.h"
|
|
#include "bitcount.h"
|
|
#include "rkiss.h"
|
|
|
|
// Global bitboards definitions with static storage duration are
|
|
// automatically set to zero before enter main().
|
|
Bitboard RMask[64];
|
|
Bitboard RMult[64];
|
|
Bitboard* RAttacks[64];
|
|
int RShift[64];
|
|
|
|
Bitboard BMask[64];
|
|
Bitboard BMult[64];
|
|
Bitboard* BAttacks[64];
|
|
int BShift[64];
|
|
|
|
Bitboard SetMaskBB[65];
|
|
Bitboard ClearMaskBB[65];
|
|
|
|
Bitboard SquaresByColorBB[2];
|
|
Bitboard FileBB[8];
|
|
Bitboard RankBB[8];
|
|
Bitboard NeighboringFilesBB[8];
|
|
Bitboard ThisAndNeighboringFilesBB[8];
|
|
Bitboard InFrontBB[2][8];
|
|
Bitboard StepAttacksBB[16][64];
|
|
Bitboard BetweenBB[64][64];
|
|
Bitboard SquaresInFrontMask[2][64];
|
|
Bitboard PassedPawnMask[2][64];
|
|
Bitboard AttackSpanMask[2][64];
|
|
|
|
Bitboard BishopPseudoAttacks[64];
|
|
Bitboard RookPseudoAttacks[64];
|
|
Bitboard QueenPseudoAttacks[64];
|
|
|
|
uint8_t BitCount8Bit[256];
|
|
|
|
namespace {
|
|
|
|
CACHE_LINE_ALIGNMENT
|
|
|
|
int BSFTable[64];
|
|
Bitboard RAttacksTable[0x19000];
|
|
Bitboard BAttacksTable[0x1480];
|
|
|
|
void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[],
|
|
Bitboard mask[], int shift[], Square delta[]);
|
|
}
|
|
|
|
|
|
/// print_bitboard() prints a bitboard in an easily readable format to the
|
|
/// standard output. This is sometimes useful for debugging.
|
|
|
|
void print_bitboard(Bitboard b) {
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; r--)
|
|
{
|
|
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
|
|
for (File f = FILE_A; f <= FILE_H; f++)
|
|
std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? 'X' : ' ') << ' ';
|
|
|
|
std::cout << "|\n";
|
|
}
|
|
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
|
|
}
|
|
|
|
|
|
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
|
|
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
|
|
/// nonzero bitboard.
|
|
|
|
#if defined(IS_64BIT) && !defined(USE_BSFQ)
|
|
|
|
Square first_1(Bitboard b) {
|
|
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
|
|
}
|
|
|
|
Square pop_1st_bit(Bitboard* b) {
|
|
Bitboard bb = *b;
|
|
*b &= (*b - 1);
|
|
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
|
|
}
|
|
|
|
#elif !defined(USE_BSFQ)
|
|
|
|
Square first_1(Bitboard b) {
|
|
b ^= (b - 1);
|
|
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
|
|
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
|
|
}
|
|
|
|
// Use type-punning
|
|
union b_union {
|
|
|
|
Bitboard b;
|
|
struct {
|
|
#if defined (BIGENDIAN)
|
|
uint32_t h;
|
|
uint32_t l;
|
|
#else
|
|
uint32_t l;
|
|
uint32_t h;
|
|
#endif
|
|
} dw;
|
|
};
|
|
|
|
Square pop_1st_bit(Bitboard* bb) {
|
|
|
|
b_union u;
|
|
Square ret;
|
|
|
|
u.b = *bb;
|
|
|
|
if (u.dw.l)
|
|
{
|
|
ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]);
|
|
u.dw.l &= (u.dw.l - 1);
|
|
*bb = u.b;
|
|
return ret;
|
|
}
|
|
ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]);
|
|
u.dw.h &= (u.dw.h - 1);
|
|
*bb = u.b;
|
|
return ret;
|
|
}
|
|
|
|
#endif // !defined(USE_BSFQ)
|
|
|
|
|
|
/// init_bitboards() initializes various bitboard arrays. It is called during
|
|
/// program initialization.
|
|
|
|
void init_bitboards() {
|
|
|
|
SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL;
|
|
SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK];
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
SetMaskBB[s] = (1ULL << s);
|
|
ClearMaskBB[s] = ~SetMaskBB[s];
|
|
}
|
|
|
|
ClearMaskBB[SQ_NONE] = ~EmptyBoardBB;
|
|
|
|
FileBB[FILE_A] = FileABB;
|
|
RankBB[RANK_1] = Rank1BB;
|
|
|
|
for (int f = FILE_B; f <= FILE_H; f++)
|
|
{
|
|
FileBB[f] = FileBB[f - 1] << 1;
|
|
RankBB[f] = RankBB[f - 1] << 8;
|
|
}
|
|
|
|
for (int f = FILE_A; f <= FILE_H; f++)
|
|
{
|
|
NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
|
ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f];
|
|
}
|
|
|
|
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
|
|
{
|
|
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
|
|
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
|
|
}
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
|
|
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s);
|
|
AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s);
|
|
}
|
|
|
|
for (Bitboard b = 0; b < 256; b++)
|
|
BitCount8Bit[b] = (uint8_t)count_1s<CNT32>(b);
|
|
|
|
for (int i = 1; i < 64; i++)
|
|
if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems
|
|
{
|
|
Bitboard b = 1ULL << i;
|
|
b ^= b - 1;
|
|
b ^= b >> 32;
|
|
BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i;
|
|
}
|
|
else
|
|
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
|
|
|
|
int steps[][9] = {
|
|
{0}, {7,9,0}, {17,15,10,6,-6,-10,-15,-17,0}, {0}, {0}, {0}, {9,7,-7,-9,8,1,-1,-8,0}
|
|
};
|
|
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
for (PieceType pt = PAWN; pt <= KING; pt++)
|
|
for (int k = 0; steps[pt][k]; k++)
|
|
{
|
|
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
|
|
|
|
if (square_is_ok(to) && square_distance(s, to) < 3)
|
|
set_bit(&StepAttacksBB[make_piece(c, pt)][s], to);
|
|
}
|
|
|
|
Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
|
|
Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
|
|
|
|
init_sliding_attacks(BMult, BAttacks, BAttacksTable, BMask, BShift, BDeltas);
|
|
init_sliding_attacks(RMult, RAttacks, RAttacksTable, RMask, RShift, RDeltas);
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB);
|
|
RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB);
|
|
QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB);
|
|
}
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
|
|
if (bit_is_set(QueenPseudoAttacks[s1], s2))
|
|
{
|
|
int f = file_distance(s1, s2);
|
|
int r = rank_distance(s1, s2);
|
|
|
|
Square d = (s2 - s1) / Max(f, r);
|
|
|
|
for (Square s3 = s1 + d; s3 != s2; s3 += d)
|
|
set_bit(&BetweenBB[s1][s2], s3);
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
Bitboard submask(Bitboard mask, int key) {
|
|
|
|
Bitboard subMask = 0;
|
|
int bitNum = -1;
|
|
|
|
// Extract an unique submask out of a mask according to the given key
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
if (bit_is_set(mask, s) && bit_is_set(key, Square(++bitNum)))
|
|
set_bit(&subMask, s);
|
|
|
|
return subMask;
|
|
}
|
|
|
|
Bitboard sliding_attacks(Square sq, Bitboard occupied, Square deltas[], Bitboard excluded) {
|
|
|
|
Bitboard attacks = 0;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
Square s = sq + deltas[i];
|
|
|
|
while ( square_is_ok(s)
|
|
&& square_distance(s, s - deltas[i]) == 1
|
|
&& !bit_is_set(excluded, s))
|
|
{
|
|
set_bit(&attacks, s);
|
|
|
|
if (bit_is_set(occupied, s))
|
|
break;
|
|
|
|
s += deltas[i];
|
|
}
|
|
}
|
|
return attacks;
|
|
}
|
|
|
|
template<bool Is64>
|
|
Bitboard pick_magic(Bitboard mask, RKISS& rk, int booster) {
|
|
|
|
Bitboard magic;
|
|
|
|
// Advance PRNG state of a quantity known to be the optimal to
|
|
// quickly retrieve all the magics.
|
|
for (int i = 0; i < booster; i++)
|
|
rk.rand<Bitboard>();
|
|
|
|
while (true)
|
|
{
|
|
magic = rk.rand<Bitboard>() & rk.rand<Bitboard>();
|
|
magic &= Is64 ? rk.rand<Bitboard>() : (rk.rand<Bitboard>() | rk.rand<Bitboard>());
|
|
|
|
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
|
|
return magic;
|
|
}
|
|
}
|
|
|
|
void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[],
|
|
Bitboard mask[], int shift[], Square delta[]) {
|
|
|
|
const int MagicBoosters[][8] = { { 55, 11, 17, 2, 39, 3, 31, 44 },
|
|
{ 26, 21, 21, 32, 31, 9, 5, 11 } };
|
|
RKISS rk;
|
|
Bitboard occupancy[4096], reference[4096], excluded;
|
|
int key, maxKey, index, booster, offset = 0;
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
|
{
|
|
excluded = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
|
|
|
attack[s] = &attTable[offset];
|
|
mask[s] = sliding_attacks(s, EmptyBoardBB, delta, excluded);
|
|
shift[s] = (CpuIs64Bit ? 64 : 32) - count_1s<CNT64>(mask[s]);
|
|
|
|
maxKey = 1 << count_1s<CNT32>(mask[s]);
|
|
offset += maxKey;
|
|
booster = MagicBoosters[CpuIs64Bit][square_rank(s)];
|
|
|
|
// First compute occupancy and attacks for square 's'
|
|
for (key = 0; key < maxKey; key++)
|
|
{
|
|
occupancy[key] = submask(mask[s], key);
|
|
reference[key] = sliding_attacks(s, occupancy[key], delta, EmptyBoardBB);
|
|
}
|
|
|
|
// Then find a possible magic and the corresponding attacks
|
|
do {
|
|
magic[s] = pick_magic<CpuIs64Bit>(mask[s], rk, booster);
|
|
memset(attack[s], 0, maxKey * sizeof(Bitboard));
|
|
|
|
for (key = 0; key < maxKey; key++)
|
|
{
|
|
index = CpuIs64Bit ? unsigned((occupancy[key] * magic[s]) >> shift[s])
|
|
: unsigned(occupancy[key] * magic[s] ^ (occupancy[key] >> 32) * (magic[s] >> 32)) >> shift[s];
|
|
|
|
if (!attack[s][index])
|
|
attack[s][index] = reference[key];
|
|
|
|
else if (attack[s][index] != reference[key])
|
|
break;
|
|
}
|
|
} while (key != maxKey);
|
|
}
|
|
}
|
|
}
|