Files
Stockfish/src/material.cpp
Stefano80 213166ba22 Always scale using pawn contribution
This is a further step in the long quest for a simple way of determining
scale factors for the endgame.

Here we remove the artificial restriction in evaluate_scale_factor()
based on endgame score. Also SCALE_FACTOR_ONEPAWN can be simplified
away. The latter is a small non functional simplification with respect
to the version that was testedin the framework, verified on bench with
depth 22 for good measure.

Passed STC
LLR: 2.95 (-2.94,2.94) [-3.00,1.00]
Total: 49438 W: 9999 L: 9930 D: 29509
http://tests.stockfishchess.org/tests/view/5ae20c8b0ebc5963175205c8

Passed LTC
LLR: 2.96 (-2.94,2.94) [-3.00,1.00]
Total: 101445 W: 15113 L: 15110 D: 71222
http://tests.stockfishchess.org/tests/view/5ae2a0560ebc5902a1998986

How to continue from there?

Maybe the general case could be scaled with pawns from both colors
without losing Elo. If that is the case, then this could be merged
somehow with the scaling in evaluate_initiative(), which also uses
a additive malus down when the number of pawns in the position goes
down.

Closes https://github.com/official-stockfish/Stockfish/pull/1570

Bench: 5254862
2018-04-29 07:26:25 +02:00

223 lines
8.2 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::min
#include <cassert>
#include <cstring> // For std::memset
#include "material.h"
#include "thread.h"
using namespace std;
namespace {
// Polynomial material imbalance parameters
constexpr int QuadraticOurs[][PIECE_TYPE_NB] = {
// OUR PIECES
// pair pawn knight bishop rook queen
{1667 }, // Bishop pair
{ 40, 0 }, // Pawn
{ 32, 255, -3 }, // Knight OUR PIECES
{ 0, 104, 4, 0 }, // Bishop
{ -26, -2, 47, 105, -149 }, // Rook
{-189, 24, 117, 133, -134, -10 } // Queen
};
constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 36, 0 }, // Pawn
{ 9, 63, 0 }, // Knight OUR PIECES
{ 59, 65, 42, 0 }, // Bishop
{ 46, 39, 24, -24, 0 }, // Rook
{ 97, 100, -42, 137, 268, 0 } // Queen
};
// Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
// Helper used to detect a given material distribution
bool is_KXK(const Position& pos, Color us) {
return !more_than_one(pos.pieces(~us))
&& pos.non_pawn_material(us) >= RookValueMg;
}
bool is_KBPsK(const Position& pos, Color us) {
return pos.non_pawn_material(us) == BishopValueMg
&& pos.count<BISHOP>(us) == 1
&& pos.count<PAWN >(us) >= 1;
}
bool is_KQKRPs(const Position& pos, Color us) {
return !pos.count<PAWN>(us)
&& pos.non_pawn_material(us) == QueenValueMg
&& pos.count<QUEEN>(us) == 1
&& pos.count<ROOK>(~us) == 1
&& pos.count<PAWN>(~us) >= 1;
}
/// imbalance() calculates the imbalance by comparing the piece count of each
/// piece type for both colors.
template<Color Us>
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
int bonus = 0;
// Second-degree polynomial material imbalance, by Tord Romstad
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
{
if (!pieceCount[Us][pt1])
continue;
int v = 0;
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
bonus += pieceCount[Us][pt1] * v;
}
return bonus;
}
} // namespace
namespace Material {
/// Material::probe() looks up the current position's material configuration in
/// the material hash table. It returns a pointer to the Entry if the position
/// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute all when the same material configuration occurs again.
Entry* probe(const Position& pos) {
Key key = pos.material_key();
Entry* e = pos.this_thread()->materialTable[key];
if (e->key == key)
return e;
std::memset(e, 0, sizeof(Entry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
Value npm = std::max(EndgameLimit, std::min(npm_w + npm_b, MidgameLimit));
// Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
return e;
for (Color c = WHITE; c <= BLACK; ++c)
if (is_KXK(pos, c))
{
e->evaluationFunction = &EvaluateKXK[c];
return e;
}
// OK, we didn't find any special evaluation function for the current material
// configuration. Is there a suitable specialized scaling function?
EndgameBase<ScaleFactor>* sf;
if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
{
e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned
return e;
}
// We didn't find any specialized scaling function, so fall back on generic
// ones that refer to more than one material distribution. Note that in this
// case we don't return after setting the function.
for (Color c = WHITE; c <= BLACK; ++c)
{
if (is_KBPsK(pos, c))
e->scalingFunction[c] = &ScaleKBPsK[c];
else if (is_KQKRPs(pos, c))
e->scalingFunction[c] = &ScaleKQKRPs[c];
}
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
{
if (!pos.count<PAWN>(BLACK))
{
assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (!pos.count<PAWN>(WHITE))
{
assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// Zero or just one pawn makes it difficult to win, even with a small material
// advantage. This catches some trivial draws like KK, KBK and KNK and gives a
// drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
npm_b <= BishopValueMg ? 4 : 14);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
npm_w <= BishopValueMg ? 4 : 14);
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return e;
}
} // namespace Material