mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-25 19:46:55 +08:00
197 lines
6.6 KiB
C++
197 lines
6.6 KiB
C++
#ifndef _NNUE_LAYERS_SUM_H_
|
|
#define _NNUE_LAYERS_SUM_H_
|
|
|
|
#include "nnue/nnue_common.h"
|
|
|
|
// Definition of layer Sum of NNUE evaluation function
|
|
namespace Eval::NNUE::Layers {
|
|
|
|
// Layer that sums the output of multiple layers
|
|
template <typename FirstPreviousLayer, typename... RemainingPreviousLayers>
|
|
class Sum : public Sum<RemainingPreviousLayers...> {
|
|
private:
|
|
using Head = FirstPreviousLayer;
|
|
using Tail = Sum<RemainingPreviousLayers...>;
|
|
|
|
public:
|
|
// Input/output type
|
|
using InputType = typename Head::OutputType;
|
|
|
|
using OutputType = InputType;
|
|
|
|
static_assert(std::is_same<InputType, typename Tail::InputType>::value, "");
|
|
|
|
// number of input/output dimensions
|
|
static constexpr IndexType kInputDimensions = Head::kOutputDimensions;
|
|
|
|
static constexpr IndexType kOutputDimensions = kInputDimensions;
|
|
|
|
static_assert(kInputDimensions == Tail::kInputDimensions ,"");
|
|
|
|
// Size of forward propagation buffer used in this layer
|
|
static constexpr std::size_t kSelfBufferSize =
|
|
ceil_to_multiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
|
|
|
|
// Size of the forward propagation buffer used from the input layer to this layer
|
|
static constexpr std::size_t kBufferSize =
|
|
std::max(Head::kBufferSize + kSelfBufferSize, Tail::kBufferSize);
|
|
|
|
static constexpr int kLayerIndex = Tail::kLayerIndex + 1;
|
|
|
|
// Hash value embedded in the evaluation function file
|
|
static constexpr std::uint32_t get_hash_value() {
|
|
std::uint32_t hash_value = 0xBCE400B4u;
|
|
hash_value ^= Head::get_hash_value() >> 1;
|
|
hash_value ^= Head::get_hash_value() << 31;
|
|
hash_value ^= Tail::get_hash_value() >> 2;
|
|
hash_value ^= Tail::get_hash_value() << 30;
|
|
return hash_value;
|
|
}
|
|
|
|
static std::string get_name() {
|
|
return "Sum[" +
|
|
std::to_string(kOutputDimensions) + "]";
|
|
}
|
|
|
|
// A string that represents the structure from the input layer to this layer
|
|
static std::string get_structure_string() {
|
|
return get_name() + "(" + get_summands_string() + ")";
|
|
}
|
|
|
|
static std::string get_layers_info() {
|
|
std::string info = Tail::get_layers_info();
|
|
info += "\n - ";
|
|
info += std::to_string(kLayerIndex);
|
|
info += " - ";
|
|
info += get_name();
|
|
return info;
|
|
}
|
|
|
|
// read parameters
|
|
bool read_parameters(std::istream& stream) {
|
|
if (!Tail::read_parameters(stream))
|
|
return false;
|
|
|
|
return previous_layer_.read_parameters(stream);
|
|
}
|
|
|
|
// write parameters
|
|
bool write_parameters(std::ostream& stream) const {
|
|
if (!Tail::write_parameters(stream))
|
|
return false;
|
|
|
|
return previous_layer_.write_parameters(stream);
|
|
}
|
|
|
|
// forward propagation
|
|
const OutputType* propagate(
|
|
const TransformedFeatureType* transformed_features, char* buffer) const {
|
|
|
|
Tail::propagate(transformed_features, buffer);
|
|
|
|
const auto head_output = previous_layer_.propagate(
|
|
transformed_features, buffer + kSelfBufferSize);
|
|
|
|
const auto output = reinterpret_cast<OutputType*>(buffer);
|
|
|
|
for (IndexType i = 0; i <kOutputDimensions; ++i) {
|
|
output[i] += head_output[i];
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
protected:
|
|
// A string that represents the list of layers to be summed
|
|
static std::string get_summands_string() {
|
|
return Head::get_structure_string() + "," + Tail::get_summands_string();
|
|
}
|
|
|
|
// Make the learning class a friend
|
|
friend class Trainer<Sum>;
|
|
|
|
// the layer immediately before this layer
|
|
FirstPreviousLayer previous_layer_;
|
|
};
|
|
|
|
// Layer that sums the output of multiple layers (when there is one template argument)
|
|
template <typename PreviousLayer>
|
|
class Sum<PreviousLayer> {
|
|
public:
|
|
// Input/output type
|
|
using InputType = typename PreviousLayer::OutputType;
|
|
|
|
using OutputType = InputType;
|
|
|
|
// number of input/output dimensions
|
|
static constexpr IndexType kInputDimensions =
|
|
PreviousLayer::kOutputDimensions;
|
|
|
|
static constexpr IndexType kOutputDimensions = kInputDimensions;
|
|
|
|
// Size of the forward propagation buffer used from the input layer to this layer
|
|
static constexpr std::size_t kBufferSize = PreviousLayer::kBufferSize;
|
|
|
|
static constexpr int kLayerIndex = PreviousLayer::kLayerIndex + 1;
|
|
|
|
// Hash value embedded in the evaluation function file
|
|
static constexpr std::uint32_t get_hash_value() {
|
|
std::uint32_t hash_value = 0xBCE400B4u;
|
|
hash_value ^= PreviousLayer::get_hash_value() >> 1;
|
|
hash_value ^= PreviousLayer::get_hash_value() << 31;
|
|
return hash_value;
|
|
}
|
|
|
|
static std::string get_name() {
|
|
return "Sum[" +
|
|
std::to_string(kOutputDimensions) + "]";
|
|
}
|
|
|
|
// A string that represents the structure from the input layer to this layer
|
|
static std::string get_structure_string() {
|
|
return get_name() + "(" + get_summands_string() + ")";
|
|
}
|
|
|
|
static std::string get_layers_info() {
|
|
std::string info = PreviousLayer::get_layers_info();
|
|
info += '\n';
|
|
info += std::to_string(kLayerIndex);
|
|
info += ": ";
|
|
info += get_name();
|
|
return info;
|
|
}
|
|
|
|
// read parameters
|
|
bool read_parameters(std::istream& stream) {
|
|
return previous_layer_.read_parameters(stream);
|
|
}
|
|
|
|
// write parameters
|
|
bool write_parameters(std::ostream& stream) const {
|
|
return previous_layer_.write_parameters(stream);
|
|
}
|
|
|
|
// forward propagation
|
|
const OutputType* propagate(
|
|
const TransformedFeatureType* transformed_features, char* buffer) const {
|
|
|
|
return previous_layer_.propagate(transformed_features, buffer);
|
|
}
|
|
|
|
protected:
|
|
// A string that represents the list of layers to be summed
|
|
static std::string get_summands_string() {
|
|
return PreviousLayer::get_structure_string();
|
|
}
|
|
|
|
// Make the learning class a friend
|
|
friend class Trainer<Sum>;
|
|
|
|
// the layer immediately before this layer
|
|
PreviousLayer previous_layer_;
|
|
};
|
|
|
|
} // namespace Eval::NNUE::Layers
|
|
|
|
#endif
|