Files
Stockfish/src/movepick.cpp
atumanian 073eed590e Optimisation of Position::see and Position::see_sign
Stephane's patch removes the only usage of Position::see, where the
returned value isn't immediately compared with a value. So I replaced
this function by its optimised and more specific version see_ge. This
function also supersedes the function Position::see_sign.

bool Position::see_ge(Move m, Value v) const;

This function tests if the SEE of a move is greater or equal than a
given value. We use forward iteration on captures instread of backward
one, therefore we don't need the swapList array. Also we stop as soon
as we have enough information to obtain the result, avoiding unnecessary
calls to the min_attacker function.

Speed tests (Windows 7), 20 runs for each engine:
Test engine: mean 866648, st. dev. 5964
Base engine: mean 846751, st. dev. 22846
Speedup: 1.023

Speed test by Stephane Nicolet

Fishtest STC test:
LLR: 2.96 (-2.94,2.94) [0.00,5.00]
Total: 26040 W: 4675 L: 4442 D: 16923
http://tests.stockfishchess.org/tests/view/57f648990ebc59038170fa03

No functional change.
2016-10-08 06:38:36 +02:00

352 lines
10 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include "movepick.h"
#include "thread.h"
namespace {
enum Stages {
MAIN_SEARCH, CAPTURES_INIT, GOOD_CAPTURES, KILLERS, COUNTERMOVE, QUIET_INIT, QUIET, BAD_CAPTURES,
EVASION, EVASIONS_INIT, ALL_EVASIONS,
PROBCUT, PROBCUT_INIT, PROBCUT_CAPTURES,
QSEARCH_WITH_CHECKS, QCAPTURES_1_INIT, QCAPTURES_1, QCHECKS,
QSEARCH_NO_CHECKS, QCAPTURES_2_INIT, QCAPTURES_2,
QSEARCH_RECAPTURES, QRECAPTURES
};
// Our insertion sort, which is guaranteed to be stable, as it should be
void insertion_sort(ExtMove* begin, ExtMove* end)
{
ExtMove tmp, *p, *q;
for (p = begin + 1; p < end; ++p)
{
tmp = *p;
for (q = p; q != begin && *(q-1) < tmp; --q)
*q = *(q-1);
*q = tmp;
}
}
// pick_best() finds the best move in the range (begin, end) and moves it to
// the front. It's faster than sorting all the moves in advance when there
// are few moves, e.g., the possible captures.
Move pick_best(ExtMove* begin, ExtMove* end)
{
std::swap(*begin, *std::max_element(begin, end));
return *begin;
}
} // namespace
/// Constructors of the MovePicker class. As arguments we pass information
/// to help it to return the (presumably) good moves first, to decide which
/// moves to return (in the quiescence search, for instance, we only want to
/// search captures, promotions, and some checks) and how important good move
/// ordering is at the current node.
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, Search::Stack* s)
: pos(p), ss(s), depth(d) {
assert(d > DEPTH_ZERO);
Square prevSq = to_sq((ss-1)->currentMove);
countermove = pos.this_thread()->counterMoves[pos.piece_on(prevSq)][prevSq];
stage = pos.checkers() ? EVASION : MAIN_SEARCH;
ttMove = ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE;
stage += (ttMove == MOVE_NONE);
}
MovePicker::MovePicker(const Position& p, Move ttm, Depth d, Square s)
: pos(p) {
assert(d <= DEPTH_ZERO);
if (pos.checkers())
stage = EVASION;
else if (d > DEPTH_QS_NO_CHECKS)
stage = QSEARCH_WITH_CHECKS;
else if (d > DEPTH_QS_RECAPTURES)
stage = QSEARCH_NO_CHECKS;
else
{
stage = QSEARCH_RECAPTURES;
recaptureSquare = s;
return;
}
ttMove = ttm && pos.pseudo_legal(ttm) ? ttm : MOVE_NONE;
stage += (ttMove == MOVE_NONE);
}
MovePicker::MovePicker(const Position& p, Move ttm, Value th)
: pos(p), threshold(th) {
assert(!pos.checkers());
stage = PROBCUT;
// In ProbCut we generate captures with SEE higher than the given threshold
ttMove = ttm
&& pos.pseudo_legal(ttm)
&& pos.capture(ttm)
&& pos.see_ge(ttm, threshold + 1)? ttm : MOVE_NONE;
stage += (ttMove == MOVE_NONE);
}
/// score() assigns a numerical value to each move in a move list. The moves with
/// highest values will be picked first.
template<>
void MovePicker::score<CAPTURES>() {
// Winning and equal captures in the main search are ordered by MVV, preferring
// captures near our home rank. Surprisingly, this appears to perform slightly
// better than SEE-based move ordering: exchanging big pieces before capturing
// a hanging piece probably helps to reduce the subtree size.
// In the main search we want to push captures with negative SEE values to the
// badCaptures[] array, but instead of doing it now we delay until the move
// has been picked up, saving some SEE calls in case we get a cutoff.
for (auto& m : *this)
m.value = PieceValue[MG][pos.piece_on(to_sq(m))]
- Value(200 * relative_rank(pos.side_to_move(), to_sq(m)));
}
template<>
void MovePicker::score<QUIETS>() {
const HistoryStats& history = pos.this_thread()->history;
const FromToStats& fromTo = pos.this_thread()->fromTo;
const CounterMoveStats* cm = (ss-1)->counterMoves;
const CounterMoveStats* fm = (ss-2)->counterMoves;
const CounterMoveStats* f2 = (ss-4)->counterMoves;
Color c = pos.side_to_move();
for (auto& m : *this)
m.value = history[pos.moved_piece(m)][to_sq(m)]
+ (cm ? (*cm)[pos.moved_piece(m)][to_sq(m)] : VALUE_ZERO)
+ (fm ? (*fm)[pos.moved_piece(m)][to_sq(m)] : VALUE_ZERO)
+ (f2 ? (*f2)[pos.moved_piece(m)][to_sq(m)] : VALUE_ZERO)
+ fromTo.get(c, m);
}
template<>
void MovePicker::score<EVASIONS>() {
// Try captures ordered by MVV/LVA, then non-captures ordered by history value
const HistoryStats& history = pos.this_thread()->history;
const FromToStats& fromTo = pos.this_thread()->fromTo;
Color c = pos.side_to_move();
for (auto& m : *this)
if (pos.capture(m))
m.value = PieceValue[MG][pos.piece_on(to_sq(m))]
- Value(type_of(pos.moved_piece(m))) + HistoryStats::Max;
else
m.value = history[pos.moved_piece(m)][to_sq(m)] + fromTo.get(c, m);
}
/// next_move() is the most important method of the MovePicker class. It returns
/// a new pseudo legal move every time it is called, until there are no more moves
/// left. It picks the move with the biggest value from a list of generated moves
/// taking care not to return the ttMove if it has already been searched.
Move MovePicker::next_move() {
Move move;
switch (stage) {
case MAIN_SEARCH: case EVASION: case QSEARCH_WITH_CHECKS:
case QSEARCH_NO_CHECKS: case PROBCUT:
++stage;
return ttMove;
case CAPTURES_INIT:
endBadCaptures = cur = moves;
endMoves = generate<CAPTURES>(pos, cur);
score<CAPTURES>();
++stage;
case GOOD_CAPTURES:
while (cur < endMoves)
{
move = pick_best(cur++, endMoves);
if (move != ttMove)
{
if (pos.see_ge(move, VALUE_ZERO))
return move;
// Losing capture, move it to the beginning of the array
*endBadCaptures++ = move;
}
}
++stage;
move = ss->killers[0]; // First killer move
if ( move != MOVE_NONE
&& move != ttMove
&& pos.pseudo_legal(move)
&& !pos.capture(move))
return move;
case KILLERS:
++stage;
move = ss->killers[1]; // Second killer move
if ( move != MOVE_NONE
&& move != ttMove
&& pos.pseudo_legal(move)
&& !pos.capture(move))
return move;
case COUNTERMOVE:
++stage;
move = countermove;
if ( move != MOVE_NONE
&& move != ttMove
&& move != ss->killers[0]
&& move != ss->killers[1]
&& pos.pseudo_legal(move)
&& !pos.capture(move))
return move;
case QUIET_INIT:
cur = endBadCaptures;
endMoves = generate<QUIETS>(pos, cur);
score<QUIETS>();
if (depth < 3 * ONE_PLY)
{
ExtMove* goodQuiet = std::partition(cur, endMoves, [](const ExtMove& m)
{ return m.value > VALUE_ZERO; });
insertion_sort(cur, goodQuiet);
} else
insertion_sort(cur, endMoves);
++stage;
case QUIET:
while (cur < endMoves)
{
move = *cur++;
if ( move != ttMove
&& move != ss->killers[0]
&& move != ss->killers[1]
&& move != countermove)
return move;
}
++stage;
cur = moves; // Point to beginning of bad captures
case BAD_CAPTURES:
if (cur < endBadCaptures)
return *cur++;
break;
case EVASIONS_INIT:
cur = moves;
endMoves = generate<EVASIONS>(pos, cur);
if (endMoves - cur - (ttMove != MOVE_NONE) > 1)
score<EVASIONS>();
++stage;
case ALL_EVASIONS:
while (cur < endMoves)
{
move = pick_best(cur++, endMoves);
if (move != ttMove)
return move;
}
break;
case PROBCUT_INIT:
cur = moves;
endMoves = generate<CAPTURES>(pos, cur);
score<CAPTURES>();
++stage;
case PROBCUT_CAPTURES:
while (cur < endMoves)
{
move = pick_best(cur++, endMoves);
if ( move != ttMove
&& pos.see_ge(move, threshold + 1))
return move;
}
break;
case QCAPTURES_1_INIT: case QCAPTURES_2_INIT:
cur = moves;
endMoves = generate<CAPTURES>(pos, cur);
score<CAPTURES>();
++stage;
case QCAPTURES_1: case QCAPTURES_2:
while (cur < endMoves)
{
move = pick_best(cur++, endMoves);
if (move != ttMove)
return move;
}
if (stage == QCAPTURES_2)
break;
cur = moves;
endMoves = generate<QUIET_CHECKS>(pos, cur);
++stage;
case QCHECKS:
while (cur < endMoves)
{
move = cur++->move;
if (move != ttMove)
return move;
}
break;
case QSEARCH_RECAPTURES:
cur = moves;
endMoves = generate<CAPTURES>(pos, cur);
score<CAPTURES>();
++stage;
case QRECAPTURES:
while (cur < endMoves)
{
move = pick_best(cur++, endMoves);
if (to_sq(move) == recaptureSquare)
return move;
}
break;
default:
assert(false);
}
return MOVE_NONE;
}