/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2025 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "search.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bitboard.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "nnue/network.h" #include "nnue/nnue_accumulator.h" #include "position.h" #include "syzygy/tbprobe.h" #include "thread.h" #include "timeman.h" #include "tt.h" #include "uci.h" #include "ucioption.h" namespace Stockfish { namespace TB = Tablebases; void syzygy_extend_pv(const OptionsMap& options, const Search::LimitsType& limits, Stockfish::Position& pos, Stockfish::Search::RootMove& rootMove, Value& v); using namespace Search; namespace { // (*Scalers): // The values with Scaler asterisks have proven non-linear scaling. // They are optimized to time controls of 180 + 1.8 and longer, // so changing them or adding conditions that are similar requires // tests at these types of time controls. int correction_value(const Worker& w, const Position& pos, const Stack* const ss) { const Color us = pos.side_to_move(); const auto m = (ss - 1)->currentMove; const auto pcv = w.pawnCorrectionHistory[pawn_structure_index(pos)][us]; const auto micv = w.minorPieceCorrectionHistory[minor_piece_index(pos)][us]; const auto wnpcv = w.nonPawnCorrectionHistory[non_pawn_index(pos)][WHITE][us]; const auto bnpcv = w.nonPawnCorrectionHistory[non_pawn_index(pos)][BLACK][us]; const auto cntcv = m.is_ok() ? (*(ss - 2)->continuationCorrectionHistory)[pos.piece_on(m.to_sq())][m.to_sq()] : 0; return 7696 * pcv + 7689 * micv + 9708 * (wnpcv + bnpcv) + 6978 * cntcv; } // Add correctionHistory value to raw staticEval and guarantee evaluation // does not hit the tablebase range. Value to_corrected_static_eval(const Value v, const int cv) { return std::clamp(v + cv / 131072, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1); } void update_correction_history(const Position& pos, Stack* const ss, Search::Worker& workerThread, const int bonus) { const Move m = (ss - 1)->currentMove; const Color us = pos.side_to_move(); static constexpr int nonPawnWeight = 172; workerThread.pawnCorrectionHistory[pawn_structure_index(pos)][us] << bonus * 111 / 128; workerThread.minorPieceCorrectionHistory[minor_piece_index(pos)][us] << bonus * 151 / 128; workerThread.nonPawnCorrectionHistory[non_pawn_index(pos)][WHITE][us] << bonus * nonPawnWeight / 128; workerThread.nonPawnCorrectionHistory[non_pawn_index(pos)][BLACK][us] << bonus * nonPawnWeight / 128; if (m.is_ok()) (*(ss - 2)->continuationCorrectionHistory)[pos.piece_on(m.to_sq())][m.to_sq()] << bonus * 141 / 128; } // Add a small random component to draw evaluations to avoid 3-fold blindness Value value_draw(size_t nodes) { return VALUE_DRAW - 1 + Value(nodes & 0x2); } Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply, int r50c); void update_pv(Move* pv, Move move, const Move* childPv); void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus); void update_quiet_histories( const Position& pos, Stack* ss, Search::Worker& workerThread, Move move, int bonus); void update_all_stats(const Position& pos, Stack* ss, Search::Worker& workerThread, Move bestMove, Square prevSq, ValueList& quietsSearched, ValueList& capturesSearched, Depth depth, Move TTMove, int moveCount); } // namespace Search::Worker::Worker(SharedState& sharedState, std::unique_ptr sm, size_t threadId, NumaReplicatedAccessToken token) : // Unpack the SharedState struct into member variables threadIdx(threadId), numaAccessToken(token), manager(std::move(sm)), options(sharedState.options), threads(sharedState.threads), tt(sharedState.tt), networks(sharedState.networks), refreshTable(networks[token]) { clear(); } void Search::Worker::ensure_network_replicated() { // Access once to force lazy initialization. // We do this because we want to avoid initialization during search. (void) (networks[numaAccessToken]); } void Search::Worker::start_searching() { accumulatorStack.reset(); // Non-main threads go directly to iterative_deepening() if (!is_mainthread()) { iterative_deepening(); return; } main_manager()->tm.init(limits, rootPos.side_to_move(), rootPos.game_ply(), options, main_manager()->originalTimeAdjust); tt.new_search(); if (rootMoves.empty()) { rootMoves.emplace_back(Move::none()); main_manager()->updates.onUpdateNoMoves( {0, {rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW, rootPos}}); } else { threads.start_searching(); // start non-main threads iterative_deepening(); // main thread start searching } // When we reach the maximum depth, we can arrive here without a raise of // threads.stop. However, if we are pondering or in an infinite search, // the UCI protocol states that we shouldn't print the best move before the // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here // until the GUI sends one of those commands. while (!threads.stop && (main_manager()->ponder || limits.infinite)) {} // Busy wait for a stop or a ponder reset // Stop the threads if not already stopped (also raise the stop if // "ponderhit" just reset threads.ponder) threads.stop = true; // Wait until all threads have finished threads.wait_for_search_finished(); // When playing in 'nodes as time' mode, subtract the searched nodes from // the available ones before exiting. if (limits.npmsec) main_manager()->tm.advance_nodes_time(threads.nodes_searched() - limits.inc[rootPos.side_to_move()]); Worker* bestThread = this; Skill skill = Skill(options["Skill Level"], options["UCI_LimitStrength"] ? int(options["UCI_Elo"]) : 0); if (int(options["MultiPV"]) == 1 && !limits.depth && !limits.mate && !skill.enabled() && rootMoves[0].pv[0] != Move::none()) bestThread = threads.get_best_thread()->worker.get(); main_manager()->bestPreviousScore = bestThread->rootMoves[0].score; main_manager()->bestPreviousAverageScore = bestThread->rootMoves[0].averageScore; // Send again PV info if we have a new best thread if (bestThread != this) main_manager()->pv(*bestThread, threads, tt, bestThread->completedDepth); std::string ponder; if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(tt, rootPos)) ponder = UCIEngine::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); auto bestmove = UCIEngine::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); main_manager()->updates.onBestmove(bestmove, ponder); } // Main iterative deepening loop. It calls search() // repeatedly with increasing depth until the allocated thinking time has been // consumed, the user stops the search, or the maximum search depth is reached. void Search::Worker::iterative_deepening() { SearchManager* mainThread = (is_mainthread() ? main_manager() : nullptr); Move pv[MAX_PLY + 1]; Depth lastBestMoveDepth = 0; Value lastBestScore = -VALUE_INFINITE; auto lastBestPV = std::vector{Move::none()}; Value alpha, beta; Value bestValue = -VALUE_INFINITE; Color us = rootPos.side_to_move(); double timeReduction = 1, totBestMoveChanges = 0; int delta, iterIdx = 0; // Allocate stack with extra size to allow access from (ss - 7) to (ss + 2): // (ss - 7) is needed for update_continuation_histories(ss - 1) which accesses (ss - 6), // (ss + 2) is needed for initialization of cutOffCnt. Stack stack[MAX_PLY + 10] = {}; Stack* ss = stack + 7; for (int i = 7; i > 0; --i) { (ss - i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel (ss - i)->continuationCorrectionHistory = &this->continuationCorrectionHistory[NO_PIECE][0]; (ss - i)->staticEval = VALUE_NONE; } for (int i = 0; i <= MAX_PLY + 2; ++i) (ss + i)->ply = i; ss->pv = pv; if (mainThread) { if (mainThread->bestPreviousScore == VALUE_INFINITE) mainThread->iterValue.fill(VALUE_ZERO); else mainThread->iterValue.fill(mainThread->bestPreviousScore); } size_t multiPV = size_t(options["MultiPV"]); Skill skill(options["Skill Level"], options["UCI_LimitStrength"] ? int(options["UCI_Elo"]) : 0); // When playing with strength handicap enable MultiPV search that we will // use behind-the-scenes to retrieve a set of possible moves. if (skill.enabled()) multiPV = std::max(multiPV, size_t(4)); multiPV = std::min(multiPV, rootMoves.size()); int searchAgainCounter = 0; lowPlyHistory.fill(86); // Iterative deepening loop until requested to stop or the target depth is reached while (++rootDepth < MAX_PLY && !threads.stop && !(limits.depth && mainThread && rootDepth > limits.depth)) { // Age out PV variability metric if (mainThread) totBestMoveChanges /= 2; // Save the last iteration's scores before the first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. for (RootMove& rm : rootMoves) rm.previousScore = rm.score; size_t pvFirst = 0; pvLast = 0; if (!threads.increaseDepth) searchAgainCounter++; // MultiPV loop. We perform a full root search for each PV line for (pvIdx = 0; pvIdx < multiPV; ++pvIdx) { if (pvIdx == pvLast) { pvFirst = pvLast; for (pvLast++; pvLast < rootMoves.size(); pvLast++) if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank) break; } // Reset UCI info selDepth for each depth and each PV line selDepth = 0; // Reset aspiration window starting size delta = 5 + std::abs(rootMoves[pvIdx].meanSquaredScore) / 11134; Value avg = rootMoves[pvIdx].averageScore; alpha = std::max(avg - delta, -VALUE_INFINITE); beta = std::min(avg + delta, VALUE_INFINITE); // Adjust optimism based on root move's averageScore optimism[us] = 137 * avg / (std::abs(avg) + 91); optimism[~us] = -optimism[us]; // Start with a small aspiration window and, in the case of a fail // high/low, re-search with a bigger window until we don't fail // high/low anymore. int failedHighCnt = 0; while (true) { // Adjust the effective depth searched, but ensure at least one // effective increment for every four searchAgain steps (see issue #2717). Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - 3 * (searchAgainCounter + 1) / 4); rootDelta = beta - alpha; bestValue = search(rootPos, ss, alpha, beta, adjustedDepth, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the // first and eventually the new best one is set to -VALUE_INFINITE // and we want to keep the same order for all the moves except the // new PV that goes to the front. Note that in the case of MultiPV // search the already searched PV lines are preserved. std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); // If search has been stopped, we break immediately. Sorting is // safe because RootMoves is still valid, although it refers to // the previous iteration. if (threads.stop) break; // When failing high/low give some update before a re-search. To avoid // excessive output that could hang GUIs like Fritz 19, only start // at nodes > 10M (rather than depth N, which can be reached quickly) if (mainThread && multiPV == 1 && (bestValue <= alpha || bestValue >= beta) && nodes > 10000000) main_manager()->pv(*this, threads, tt, rootDepth); // In case of failing low/high increase aspiration window and re-search, // otherwise exit the loop. if (bestValue <= alpha) { beta = (alpha + beta) / 2; alpha = std::max(bestValue - delta, -VALUE_INFINITE); failedHighCnt = 0; if (mainThread) mainThread->stopOnPonderhit = false; } else if (bestValue >= beta) { beta = std::min(bestValue + delta, VALUE_INFINITE); ++failedHighCnt; } else break; delta += delta / 3; assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } // Sort the PV lines searched so far and update the GUI std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1); if (mainThread && (threads.stop || pvIdx + 1 == multiPV || nodes > 10000000) // A thread that aborted search can have mated-in/TB-loss PV and // score that cannot be trusted, i.e. it can be delayed or refuted // if we would have had time to fully search other root-moves. Thus // we suppress this output and below pick a proven score/PV for this // thread (from the previous iteration). && !(threads.abortedSearch && is_loss(rootMoves[0].uciScore))) main_manager()->pv(*this, threads, tt, rootDepth); if (threads.stop) break; } if (!threads.stop) completedDepth = rootDepth; // We make sure not to pick an unproven mated-in score, // in case this thread prematurely stopped search (aborted-search). if (threads.abortedSearch && rootMoves[0].score != -VALUE_INFINITE && is_loss(rootMoves[0].score)) { // Bring the last best move to the front for best thread selection. Utility::move_to_front(rootMoves, [&lastBestPV = std::as_const(lastBestPV)]( const auto& rm) { return rm == lastBestPV[0]; }); rootMoves[0].pv = lastBestPV; rootMoves[0].score = rootMoves[0].uciScore = lastBestScore; } else if (rootMoves[0].pv[0] != lastBestPV[0]) { lastBestPV = rootMoves[0].pv; lastBestScore = rootMoves[0].score; lastBestMoveDepth = rootDepth; } if (!mainThread) continue; // Have we found a "mate in x"? if (limits.mate && rootMoves[0].score == rootMoves[0].uciScore && ((rootMoves[0].score >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - rootMoves[0].score <= 2 * limits.mate) || (rootMoves[0].score != -VALUE_INFINITE && rootMoves[0].score <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + rootMoves[0].score <= 2 * limits.mate))) threads.stop = true; // If the skill level is enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(rootDepth)) skill.pick_best(rootMoves, multiPV); // Use part of the gained time from a previous stable move for the current move for (auto&& th : threads) { totBestMoveChanges += th->worker->bestMoveChanges; th->worker->bestMoveChanges = 0; } // Do we have time for the next iteration? Can we stop searching now? if (limits.use_time_management() && !threads.stop && !mainThread->stopOnPonderhit) { uint64_t nodesEffort = rootMoves[0].effort * 100000 / std::max(size_t(1), size_t(nodes)); double fallingEval = (11.396 + 2.035 * (mainThread->bestPreviousAverageScore - bestValue) + 0.968 * (mainThread->iterValue[iterIdx] - bestValue)) / 100.0; fallingEval = std::clamp(fallingEval, 0.5786, 1.6752); // If the bestMove is stable over several iterations, reduce time accordingly double k = 0.527; double center = lastBestMoveDepth + 11; timeReduction = 0.8 + 0.84 / (1.077 + std::exp(-k * (completedDepth - center))); double reduction = (1.4540 + mainThread->previousTimeReduction) / (2.1593 * timeReduction); double bestMoveInstability = 0.9929 + 1.8519 * totBestMoveChanges / threads.size(); double totalTime = mainThread->tm.optimum() * fallingEval * reduction * bestMoveInstability; // Cap used time in case of a single legal move for a better viewer experience if (rootMoves.size() == 1) totalTime = std::min(500.0, totalTime); auto elapsedTime = elapsed(); if (completedDepth >= 10 && nodesEffort >= 97056 && elapsedTime > totalTime * 0.6540 && !mainThread->ponder) threads.stop = true; // Stop the search if we have exceeded the totalTime or maximum if (elapsedTime > std::min(totalTime, double(mainThread->tm.maximum()))) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". if (mainThread->ponder) mainThread->stopOnPonderhit = true; else threads.stop = true; } else threads.increaseDepth = mainThread->ponder || elapsedTime <= totalTime * 0.5138; } mainThread->iterValue[iterIdx] = bestValue; iterIdx = (iterIdx + 1) & 3; } if (!mainThread) return; mainThread->previousTimeReduction = timeReduction; // If the skill level is enabled, swap the best PV line with the sub-optimal one if (skill.enabled()) std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), skill.best ? skill.best : skill.pick_best(rootMoves, multiPV))); } void Search::Worker::do_move(Position& pos, const Move move, StateInfo& st) { do_move(pos, move, st, pos.gives_check(move)); } void Search::Worker::do_move(Position& pos, const Move move, StateInfo& st, const bool givesCheck) { DirtyPiece dp = pos.do_move(move, st, givesCheck, &tt); nodes.fetch_add(1, std::memory_order_relaxed); accumulatorStack.push(dp); } void Search::Worker::do_null_move(Position& pos, StateInfo& st) { pos.do_null_move(st, tt); } void Search::Worker::undo_move(Position& pos, const Move move) { pos.undo_move(move); accumulatorStack.pop(); } void Search::Worker::undo_null_move(Position& pos) { pos.undo_null_move(); } // Reset histories, usually before a new game void Search::Worker::clear() { mainHistory.fill(67); lowPlyHistory.fill(107); captureHistory.fill(-688); pawnHistory.fill(-1287); pawnCorrectionHistory.fill(5); minorPieceCorrectionHistory.fill(0); nonPawnCorrectionHistory.fill(0); ttMoveHistory = 0; for (auto& to : continuationCorrectionHistory) for (auto& h : to) h.fill(8); for (bool inCheck : {false, true}) for (StatsType c : {NoCaptures, Captures}) for (auto& to : continuationHistory[inCheck][c]) for (auto& h : to) h.fill(-473); for (size_t i = 1; i < reductions.size(); ++i) reductions[i] = int(2796 / 128.0 * std::log(i)); refreshTable.clear(networks[numaAccessToken]); } // Main search function for both PV and non-PV nodes template Value Search::Worker::search( Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { constexpr bool PvNode = nodeType != NonPV; constexpr bool rootNode = nodeType == Root; const bool allNode = !(PvNode || cutNode); // Dive into quiescence search when the depth reaches zero if (depth <= 0) { constexpr auto nt = PvNode ? PV : NonPV; return qsearch(pos, ss, alpha, beta); } // Limit the depth if extensions made it too large depth = std::min(depth, MAX_PLY - 1); // Check if we have an upcoming move that draws by repetition if (!rootNode && alpha < VALUE_DRAW && pos.upcoming_repetition(ss->ply)) { alpha = value_draw(this->nodes); if (alpha >= beta) return alpha; } assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(0 < depth && depth < MAX_PLY); assert(!(PvNode && cutNode)); Move pv[MAX_PLY + 1]; StateInfo st; Key posKey; Move move, excludedMove, bestMove; Depth extension, newDepth; Value bestValue, value, eval, maxValue, probCutBeta; bool givesCheck, improving, priorCapture, opponentWorsening; bool capture, ttCapture; int priorReduction; Piece movedPiece; ValueList capturesSearched; ValueList quietsSearched; // Step 1. Initialize node Worker* thisThread = this; ss->inCheck = pos.checkers(); priorCapture = pos.captured_piece(); Color us = pos.side_to_move(); ss->moveCount = 0; bestValue = -VALUE_INFINITE; maxValue = VALUE_INFINITE; // Check for the available remaining time if (is_mainthread()) main_manager()->check_time(*thisThread); // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) if (PvNode && thisThread->selDepth < ss->ply + 1) thisThread->selDepth = ss->ply + 1; if (!rootNode) { // Step 2. Check for aborted search and immediate draw if (threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : value_draw(thisThread->nodes); // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply + 1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // because we will never beat the current alpha. Same logic but with reversed // signs apply also in the opposite condition of being mated instead of giving // mate. In this case, return a fail-high score. alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply + 1), beta); if (alpha >= beta) return alpha; } assert(0 <= ss->ply && ss->ply < MAX_PLY); Square prevSq = ((ss - 1)->currentMove).is_ok() ? ((ss - 1)->currentMove).to_sq() : SQ_NONE; bestMove = Move::none(); priorReduction = (ss - 1)->reduction; (ss - 1)->reduction = 0; ss->statScore = 0; ss->isPvNode = PvNode; (ss + 2)->cutoffCnt = 0; // Step 4. Transposition table lookup excludedMove = ss->excludedMove; posKey = pos.key(); auto [ttHit, ttData, ttWriter] = tt.probe(posKey); // Need further processing of the saved data ss->ttHit = ttHit; ttData.move = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] : ttHit ? ttData.move : Move::none(); ttData.value = ttHit ? value_from_tt(ttData.value, ss->ply, pos.rule50_count()) : VALUE_NONE; ss->ttPv = excludedMove ? ss->ttPv : PvNode || (ttHit && ttData.is_pv); ttCapture = ttData.move && pos.capture_stage(ttData.move); // At this point, if excluded, skip straight to step 6, static eval. However, // to save indentation, we list the condition in all code between here and there. // At non-PV nodes we check for an early TT cutoff if (!PvNode && !excludedMove && ttData.depth > depth - (ttData.value <= beta) && is_valid(ttData.value) // Can happen when !ttHit or when access race in probe() && (ttData.bound & (ttData.value >= beta ? BOUND_LOWER : BOUND_UPPER)) && (cutNode == (ttData.value >= beta) || depth > 5)) { // If ttMove is quiet, update move sorting heuristics on TT hit if (ttData.move && ttData.value >= beta) { // Bonus for a quiet ttMove that fails high if (!ttCapture) update_quiet_histories(pos, ss, *this, ttData.move, std::min(125 * depth - 77, 1157)); // Extra penalty for early quiet moves of the previous ply if (prevSq != SQ_NONE && (ss - 1)->moveCount <= 3 && !priorCapture) update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, -2301); } // Partial workaround for the graph history interaction problem // For high rule50 counts don't produce transposition table cutoffs. if (pos.rule50_count() < 90) { if (depth >= 8 && ttData.move && pos.pseudo_legal(ttData.move) && pos.legal(ttData.move) && !is_decisive(ttData.value)) { do_move(pos, ttData.move, st); Key nextPosKey = pos.key(); auto [ttHitNext, ttDataNext, ttWriterNext] = tt.probe(nextPosKey); ttDataNext.value = ttHitNext ? value_from_tt(ttDataNext.value, ss->ply + 1, pos.rule50_count()) : VALUE_NONE; undo_move(pos, ttData.move); if (!is_valid(ttDataNext.value)) return ttData.value; if (ttData.value >= beta && -ttDataNext.value >= beta) return ttData.value; if (ttData.value <= alpha && -ttDataNext.value <= alpha) return ttData.value; } else return ttData.value; } } // Step 5. Tablebases probe if (!rootNode && !excludedMove && tbConfig.cardinality) { int piecesCount = pos.count(); if (piecesCount <= tbConfig.cardinality && (piecesCount < tbConfig.cardinality || depth >= tbConfig.probeDepth) && pos.rule50_count() == 0 && !pos.can_castle(ANY_CASTLING)) { TB::ProbeState err; TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err); // Force check of time on the next occasion if (is_mainthread()) main_manager()->callsCnt = 0; if (err != TB::ProbeState::FAIL) { thisThread->tbHits.fetch_add(1, std::memory_order_relaxed); int drawScore = tbConfig.useRule50 ? 1 : 0; Value tbValue = VALUE_TB - ss->ply; // Use the range VALUE_TB to VALUE_TB_WIN_IN_MAX_PLY to score value = wdl < -drawScore ? -tbValue : wdl > drawScore ? tbValue : VALUE_DRAW + 2 * wdl * drawScore; Bound b = wdl < -drawScore ? BOUND_UPPER : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT; if (b == BOUND_EXACT || (b == BOUND_LOWER ? value >= beta : value <= alpha)) { ttWriter.write(posKey, value_to_tt(value, ss->ply), ss->ttPv, b, std::min(MAX_PLY - 1, depth + 6), Move::none(), VALUE_NONE, tt.generation()); return value; } if (PvNode) { if (b == BOUND_LOWER) bestValue = value, alpha = std::max(alpha, bestValue); else maxValue = value; } } } } // Step 6. Static evaluation of the position Value unadjustedStaticEval = VALUE_NONE; const auto correctionValue = correction_value(*thisThread, pos, ss); if (ss->inCheck) { // Skip early pruning when in check ss->staticEval = eval = (ss - 2)->staticEval; improving = false; goto moves_loop; } else if (excludedMove) { // Providing the hint that this node's accumulator will be used often unadjustedStaticEval = eval = ss->staticEval; } else if (ss->ttHit) { // Never assume anything about values stored in TT unadjustedStaticEval = ttData.eval; if (!is_valid(unadjustedStaticEval)) unadjustedStaticEval = evaluate(pos); ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, correctionValue); // ttValue can be used as a better position evaluation if (is_valid(ttData.value) && (ttData.bound & (ttData.value > eval ? BOUND_LOWER : BOUND_UPPER))) eval = ttData.value; } else { unadjustedStaticEval = evaluate(pos); ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, correctionValue); // Static evaluation is saved as it was before adjustment by correction history ttWriter.write(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_UNSEARCHED, Move::none(), unadjustedStaticEval, tt.generation()); } // Use static evaluation difference to improve quiet move ordering if (((ss - 1)->currentMove).is_ok() && !(ss - 1)->inCheck && !priorCapture && (ttData.depth - 2) <= depth) { int bonus = std::clamp(-10 * int((ss - 1)->staticEval + ss->staticEval), -1858, 1492) + 661; thisThread->mainHistory[~us][((ss - 1)->currentMove).from_to()] << bonus * 1057 / 1024; if (type_of(pos.piece_on(prevSq)) != PAWN && ((ss - 1)->currentMove).type_of() != PROMOTION) thisThread->pawnHistory[pawn_structure_index(pos)][pos.piece_on(prevSq)][prevSq] << bonus * 1266 / 1024; } // Set up the improving flag, which is true if current static evaluation is // bigger than the previous static evaluation at our turn (if we were in // check at our previous move we go back until we weren't in check) and is // false otherwise. The improving flag is used in various pruning heuristics. improving = ss->staticEval > (ss - 2)->staticEval; opponentWorsening = ss->staticEval > -(ss - 1)->staticEval; if (priorReduction >= 3 && !opponentWorsening) depth++; if (priorReduction >= 1 && depth >= 2 && ss->staticEval + (ss - 1)->staticEval > 175) depth--; // Step 7. Razoring // If eval is really low, skip search entirely and return the qsearch value. // For PvNodes, we must have a guard against mates being returned. if (!PvNode && eval < alpha - 486 - 325 * depth * depth) return qsearch(pos, ss, alpha, beta); // Step 8. Futility pruning: child node // The depth condition is important for mate finding. { auto futility_margin = [&](Depth d) { Value futilityMult = 93 - 20 * (cutNode && !ss->ttHit); return futilityMult * d // - improving * futilityMult * 2 // - opponentWorsening * futilityMult / 3 // + (ss - 1)->statScore / 376 // + std::abs(correctionValue) / 168639; }; if (!ss->ttPv && depth < 14 && eval - futility_margin(depth) >= beta && eval >= beta && (!ttData.move || ttCapture) && !is_loss(beta) && !is_win(eval)) return beta + (eval - beta) / 3; } // Step 9. Null move search with verification search if (cutNode && (ss - 1)->currentMove != Move::null() && eval >= beta && ss->staticEval >= beta - 19 * depth + 389 && !excludedMove && pos.non_pawn_material(us) && ss->ply >= thisThread->nmpMinPly && !is_loss(beta)) { assert(eval - beta >= 0); // Null move dynamic reduction based on depth and eval Depth R = std::min(int(eval - beta) / 213, 6) + depth / 3 + 5; ss->currentMove = Move::null(); ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0]; ss->continuationCorrectionHistory = &thisThread->continuationCorrectionHistory[NO_PIECE][0]; do_null_move(pos, st); Value nullValue = -search(pos, ss + 1, -beta, -beta + 1, depth - R, false); undo_null_move(pos); // Do not return unproven mate or TB scores if (nullValue >= beta && !is_win(nullValue)) { if (thisThread->nmpMinPly || depth < 16) return nullValue; assert(!thisThread->nmpMinPly); // Recursive verification is not allowed // Do verification search at high depths, with null move pruning disabled // until ply exceeds nmpMinPly. thisThread->nmpMinPly = ss->ply + 3 * (depth - R) / 4; Value v = search(pos, ss, beta - 1, beta, depth - R, false); thisThread->nmpMinPly = 0; if (v >= beta) return nullValue; } } improving |= ss->staticEval >= beta + 94; // Step 10. Internal iterative reductions // For PV nodes without a ttMove as well as for deep enough cutNodes, we decrease depth. // (*Scaler) Especially if they make IIR less aggressive. if (!allNode && depth >= (PvNode ? 5 : 7) && !ttData.move) depth--; // Step 11. ProbCut // If we have a good enough capture (or queen promotion) and a reduced search // returns a value much above beta, we can (almost) safely prune the previous move. probCutBeta = beta + 201 - 58 * improving; if (depth >= 3 && !is_decisive(beta) // If value from transposition table is lower than probCutBeta, don't attempt // probCut there and in further interactions with transposition table cutoff // depth is set to depth - 3 because probCut search has depth set to depth - 4 // but we also do a move before it. So effective depth is equal to depth - 3. && !(is_valid(ttData.value) && ttData.value < probCutBeta)) { assert(probCutBeta < VALUE_INFINITE && probCutBeta > beta); MovePicker mp(pos, ttData.move, probCutBeta - ss->staticEval, &thisThread->captureHistory); Depth probCutDepth = std::max(depth - (4 + cutNode), 0); while ((move = mp.next_move()) != Move::none()) { assert(move.is_ok()); if (move == excludedMove || !pos.legal(move)) continue; assert(pos.capture_stage(move)); movedPiece = pos.moved_piece(move); do_move(pos, move, st); ss->currentMove = move; ss->continuationHistory = &this->continuationHistory[ss->inCheck][true][movedPiece][move.to_sq()]; ss->continuationCorrectionHistory = &this->continuationCorrectionHistory[movedPiece][move.to_sq()]; // Perform a preliminary qsearch to verify that the move holds value = -qsearch(pos, ss + 1, -probCutBeta, -probCutBeta + 1); // If the qsearch held, perform the regular search if (value >= probCutBeta && probCutDepth > 0) value = -search(pos, ss + 1, -probCutBeta, -probCutBeta + 1, probCutDepth, !cutNode); undo_move(pos, move); if (value >= probCutBeta) { // Save ProbCut data into transposition table ttWriter.write(posKey, value_to_tt(value, ss->ply), ss->ttPv, BOUND_LOWER, probCutDepth + 1, move, unadjustedStaticEval, tt.generation()); if (!is_decisive(value)) return value - (probCutBeta - beta); } } } moves_loop: // When in check, search starts here // Step 12. A small Probcut idea probCutBeta = beta + 400; if ((ttData.bound & BOUND_LOWER) && ttData.depth >= depth - 4 && ttData.value >= probCutBeta && !is_decisive(beta) && is_valid(ttData.value) && !is_decisive(ttData.value)) return probCutBeta; const PieceToHistory* contHist[] = { (ss - 1)->continuationHistory, (ss - 2)->continuationHistory, (ss - 3)->continuationHistory, (ss - 4)->continuationHistory, (ss - 5)->continuationHistory, (ss - 6)->continuationHistory}; MovePicker mp(pos, ttData.move, depth, &thisThread->mainHistory, &thisThread->lowPlyHistory, &thisThread->captureHistory, contHist, &thisThread->pawnHistory, ss->ply); value = bestValue; int moveCount = 0; // Step 13. Loop through all pseudo-legal moves until no moves remain // or a beta cutoff occurs. while ((move = mp.next_move()) != Move::none()) { assert(move.is_ok()); if (move == excludedMove) continue; // Check for legality if (!pos.legal(move)) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List. In MultiPV mode we also skip PV moves that have been already // searched and those of lower "TB rank" if we are in a TB root position. if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, thisThread->rootMoves.begin() + thisThread->pvLast, move)) continue; ss->moveCount = ++moveCount; if (rootNode && is_mainthread() && nodes > 10000000) { main_manager()->updates.onIter( {depth, UCIEngine::move(move, pos.is_chess960()), moveCount + thisThread->pvIdx}); } if (PvNode) (ss + 1)->pv = nullptr; extension = 0; capture = pos.capture_stage(move); movedPiece = pos.moved_piece(move); givesCheck = pos.gives_check(move); (ss + 1)->quietMoveStreak = (!capture && !givesCheck) ? (ss->quietMoveStreak + 1) : 0; // Calculate new depth for this move newDepth = depth - 1; int delta = beta - alpha; Depth r = reduction(improving, depth, moveCount, delta); // Increase reduction for ttPv nodes (*Scaler) // Smaller or even negative value is better for short time controls // Bigger value is better for long time controls if (ss->ttPv) r += 968; // Step 14. Pruning at shallow depth. // Depth conditions are important for mate finding. if (!rootNode && pos.non_pawn_material(us) && !is_loss(bestValue)) { // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold if (moveCount >= (3 + depth * depth) / (2 - improving)) mp.skip_quiet_moves(); // Reduced depth of the next LMR search int lmrDepth = newDepth - r / 1024; if (capture || givesCheck) { Piece capturedPiece = pos.piece_on(move.to_sq()); int captHist = thisThread->captureHistory[movedPiece][move.to_sq()][type_of(capturedPiece)]; // Futility pruning for captures if (!givesCheck && lmrDepth < 7 && !ss->inCheck) { Value futilityValue = ss->staticEval + 232 + 224 * lmrDepth + PieceValue[capturedPiece] + 131 * captHist / 1024; if (futilityValue <= alpha) continue; } // SEE based pruning for captures and checks int seeHist = std::clamp(captHist / 31, -137 * depth, 125 * depth); if (!pos.see_ge(move, -158 * depth - seeHist)) { bool mayStalemateTrap = depth > 2 && alpha < 0 && pos.non_pawn_material(us) == PieceValue[movedPiece] && PieceValue[movedPiece] >= RookValue // it can't be stalemate if we moved a piece adjacent to the king && !(attacks_bb(pos.square(us)) & move.from_sq()) && !mp.can_move_king_or_pawn(); // avoid pruning sacrifices of our last piece for stalemate if (!mayStalemateTrap) continue; } } else { int history = (*contHist[0])[movedPiece][move.to_sq()] + (*contHist[1])[movedPiece][move.to_sq()] + thisThread->pawnHistory[pawn_structure_index(pos)][movedPiece][move.to_sq()]; // Continuation history based pruning if (history < -4229 * depth) continue; history += 68 * thisThread->mainHistory[us][move.from_to()] / 32; lmrDepth += history / 3388; Value baseFutility = (bestMove ? 46 : 138 + std::abs(history / 300)); Value futilityValue = ss->staticEval + baseFutility + 117 * lmrDepth + 102 * (ss->staticEval > alpha); // Futility pruning: parent node // (*Scaler): Generally, more frequent futility pruning // scales well with respect to time and threads if (!ss->inCheck && lmrDepth < 12 && futilityValue <= alpha) { if (bestValue <= futilityValue && !is_decisive(bestValue) && !is_win(futilityValue)) bestValue = futilityValue; continue; } lmrDepth = std::max(lmrDepth, 0); // Prune moves with negative SEE if (!pos.see_ge(move, -27 * lmrDepth * lmrDepth)) continue; } } // Step 15. Extensions // Singular extension search. If all moves but one // fail low on a search of (alpha-s, beta-s), and just one fails high on // (alpha, beta), then that move is singular and should be extended. To // verify this we do a reduced search on the position excluding the ttMove // and if the result is lower than ttValue minus a margin, then we will // extend the ttMove. Recursive singular search is avoided. // (*Scaler) Generally, higher singularBeta (i.e closer to ttValue) // and lower extension margins scale well. if (!rootNode && move == ttData.move && !excludedMove && depth >= 6 - (thisThread->completedDepth > 27) + ss->ttPv && is_valid(ttData.value) && !is_decisive(ttData.value) && (ttData.bound & BOUND_LOWER) && ttData.depth >= depth - 3) { Value singularBeta = ttData.value - (58 + 76 * (ss->ttPv && !PvNode)) * depth / 57; Depth singularDepth = newDepth / 2; ss->excludedMove = move; value = search(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode); ss->excludedMove = Move::none(); if (value < singularBeta) { int corrValAdj1 = std::abs(correctionValue) / 248400; int corrValAdj2 = std::abs(correctionValue) / 249757; int doubleMargin = -4 + 244 * PvNode - 206 * !ttCapture - corrValAdj1 - 997 * ttMoveHistory / 131072 - (ss->ply * 2 > thisThread->rootDepth * 3) * 47; int tripleMargin = 84 + 269 * PvNode - 253 * !ttCapture + 91 * ss->ttPv - corrValAdj2 - (ss->ply * 2 > thisThread->rootDepth * 3) * 54; extension = 1 + (value < singularBeta - doubleMargin) + (value < singularBeta - tripleMargin); depth++; } // Multi-cut pruning // Our ttMove is assumed to fail high based on the bound of the TT entry, // and if after excluding the ttMove with a reduced search we fail high // over the original beta, we assume this expected cut-node is not // singular (multiple moves fail high), and we can prune the whole // subtree by returning a softbound. else if (value >= beta && !is_decisive(value)) return value; // Negative extensions // If other moves failed high over (ttValue - margin) without the // ttMove on a reduced search, but we cannot do multi-cut because // (ttValue - margin) is lower than the original beta, we do not know // if the ttMove is singular or can do a multi-cut, so we reduce the // ttMove in favor of other moves based on some conditions: // If the ttMove is assumed to fail high over current beta else if (ttData.value >= beta) extension = -3; // If we are on a cutNode but the ttMove is not assumed to fail high // over current beta else if (cutNode) extension = -2; } // Step 16. Make the move do_move(pos, move, st, givesCheck); // Add extension to new depth newDepth += extension; // Update the current move (this must be done after singular extension search) ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck][capture][movedPiece][move.to_sq()]; ss->continuationCorrectionHistory = &thisThread->continuationCorrectionHistory[movedPiece][move.to_sq()]; uint64_t nodeCount = rootNode ? uint64_t(nodes) : 0; // Decrease reduction for PvNodes (*Scaler) if (ss->ttPv) r -= 2437 + PvNode * 926 + (ttData.value > alpha) * 901 + (ttData.depth >= depth) * (943 + cutNode * 1180); // These reduction adjustments have no proven non-linear scaling r += 316; // Base reduction offset to compensate for other tweaks r -= moveCount * 66; r -= std::abs(correctionValue) / 28047; // Increase reduction for cut nodes if (cutNode) r += 2864 + 966 * !ttData.move; // Increase reduction if ttMove is a capture if (ttCapture) r += 1210 + (depth < 8) * 963; // Increase reduction if next ply has a lot of fail high if ((ss + 1)->cutoffCnt > 2) r += 1036 + allNode * 848; if (!capture && !givesCheck && ss->quietMoveStreak >= 2) r += (ss->quietMoveStreak - 1) * 50; // For first picked move (ttMove) reduce reduction if (move == ttData.move) r -= 2006; if (capture) ss->statScore = 826 * int(PieceValue[pos.captured_piece()]) / 128 + thisThread->captureHistory[movedPiece][move.to_sq()][type_of(pos.captured_piece())] - 5030; else ss->statScore = 2 * thisThread->mainHistory[us][move.from_to()] + (*contHist[0])[movedPiece][move.to_sq()] + (*contHist[1])[movedPiece][move.to_sq()] + 1000 * ss->inCheck - 3206; // Decrease/increase reduction for moves with a good/bad history r -= ss->statScore * 826 / 8192; // Step 17. Late moves reduction / extension (LMR) if (depth >= 2 && moveCount > 1) { // In general we want to cap the LMR depth search at newDepth, but when // reduction is negative, we allow this move a limited search extension // beyond the first move depth. // To prevent problems when the max value is less than the min value, // std::clamp has been replaced by a more robust implementation. Depth d = std::max(1, std::min(newDepth - r / 1024, newDepth + !allNode + (PvNode && !bestMove))) + (ss - 1)->isPvNode; ss->reduction = newDepth - d; value = -search(pos, ss + 1, -(alpha + 1), -alpha, d, true); ss->reduction = 0; // Do a full-depth search when reduced LMR search fails high // (*Scaler) Usually doing more shallower searches // doesn't scale well to longer TCs if (value > alpha && d < newDepth) { // Adjust full-depth search based on LMR results - if the result was // good enough search deeper, if it was bad enough search shallower. const bool doDeeperSearch = value > (bestValue + 42 + 2 * newDepth); const bool doShallowerSearch = value < bestValue + 9; newDepth += doDeeperSearch - doShallowerSearch; if (newDepth > d) value = -search(pos, ss + 1, -(alpha + 1), -alpha, newDepth, !cutNode); // Post LMR continuation history updates update_continuation_histories(ss, movedPiece, move.to_sq(), 1508); } else if (value > alpha && value < bestValue + 9) newDepth--; } // Step 18. Full-depth search when LMR is skipped else if (!PvNode || moveCount > 1) { // Increase reduction if ttMove is not present if (!ttData.move) r += 1128; r -= ttMoveHistory / 8; // Note that if expected reduction is high, we reduce search depth here value = -search(pos, ss + 1, -(alpha + 1), -alpha, newDepth - (r > 3564) - (r > 4969 && newDepth > 2), !cutNode); } // For PV nodes only, do a full PV search on the first move or after a fail high, // otherwise let the parent node fail low with value <= alpha and try another move. if (PvNode && (moveCount == 1 || value > alpha)) { (ss + 1)->pv = pv; (ss + 1)->pv[0] = Move::none(); // Extend move from transposition table if we are about to dive into qsearch. if (move == ttData.move && thisThread->rootDepth > 8) newDepth = std::max(newDepth, 1); value = -search(pos, ss + 1, -beta, -alpha, newDepth, false); } // Step 19. Undo move undo_move(pos, move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 20. Check for a new best move // Finished searching the move. If a stop occurred, the return value of // the search cannot be trusted, and we return immediately without updating // best move, principal variation nor transposition table. if (threads.stop.load(std::memory_order_relaxed)) return VALUE_ZERO; if (rootNode) { RootMove& rm = *std::find(thisThread->rootMoves.begin(), thisThread->rootMoves.end(), move); rm.effort += nodes - nodeCount; rm.averageScore = rm.averageScore != -VALUE_INFINITE ? (value + rm.averageScore) / 2 : value; rm.meanSquaredScore = rm.meanSquaredScore != -VALUE_INFINITE * VALUE_INFINITE ? (value * std::abs(value) + rm.meanSquaredScore) / 2 : value * std::abs(value); // PV move or new best move? if (moveCount == 1 || value > alpha) { rm.score = rm.uciScore = value; rm.selDepth = thisThread->selDepth; rm.scoreLowerbound = rm.scoreUpperbound = false; if (value >= beta) { rm.scoreLowerbound = true; rm.uciScore = beta; } else if (value <= alpha) { rm.scoreUpperbound = true; rm.uciScore = alpha; } rm.pv.resize(1); assert((ss + 1)->pv); for (Move* m = (ss + 1)->pv; *m != Move::none(); ++m) rm.pv.push_back(*m); // We record how often the best move has been changed in each iteration. // This information is used for time management. In MultiPV mode, // we must take care to only do this for the first PV line. if (moveCount > 1 && !thisThread->pvIdx) ++thisThread->bestMoveChanges; } else // All other moves but the PV, are set to the lowest value: this // is not a problem when sorting because the sort is stable and the // move position in the list is preserved - just the PV is pushed up. rm.score = -VALUE_INFINITE; } // In case we have an alternative move equal in eval to the current bestmove, // promote it to bestmove by pretending it just exceeds alpha (but not beta). int inc = (value == bestValue && ss->ply + 2 >= thisThread->rootDepth && (int(nodes) & 15) == 0 && !is_win(std::abs(value) + 1)); if (value + inc > bestValue) { bestValue = value; if (value + inc > alpha) { bestMove = move; if (PvNode && !rootNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss + 1)->pv); if (value >= beta) { // (* Scaler) Especially if they make cutoffCnt increment more often. ss->cutoffCnt += (extension < 2) || PvNode; assert(value >= beta); // Fail high break; } else { // Reduce other moves if we have found at least one score improvement if (depth > 2 && depth < 16 && !is_decisive(value)) depth -= 2; assert(depth > 0); alpha = value; // Update alpha! Always alpha < beta } } } // If the move is worse than some previously searched move, // remember it, to update its stats later. if (move != bestMove && moveCount <= 32) { if (capture) capturesSearched.push_back(move); else quietsSearched.push_back(move); } } // Step 21. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be a mate or a stalemate. If we are in a singular extension search then // return a fail low score. assert(moveCount || !ss->inCheck || excludedMove || !MoveList(pos).size()); // Adjust best value for fail high cases if (bestValue >= beta && !is_decisive(bestValue) && !is_decisive(beta) && !is_decisive(alpha)) bestValue = (bestValue * depth + beta) / (depth + 1); if (!moveCount) bestValue = excludedMove ? alpha : ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW; // If there is a move that produces search value greater than alpha, // we update the stats of searched moves. else if (bestMove) { update_all_stats(pos, ss, *this, bestMove, prevSq, quietsSearched, capturesSearched, depth, ttData.move, moveCount); if (!PvNode) ttMoveHistory << (bestMove == ttData.move ? 800 : -879); } // Bonus for prior quiet countermove that caused the fail low else if (!priorCapture && prevSq != SQ_NONE) { int bonusScale = -302; bonusScale += std::min(-(ss - 1)->statScore / 103, 323); bonusScale += std::min(73 * depth, 531); bonusScale += 174 * ((ss - 1)->moveCount > 8); bonusScale += 90 * (ss->cutoffCnt <= 3); bonusScale += 144 * (!ss->inCheck && bestValue <= ss->staticEval - 104); bonusScale += 128 * (!(ss - 1)->inCheck && bestValue <= -(ss - 1)->staticEval - 82); bonusScale = std::max(bonusScale, 0); const int scaledBonus = std::min(159 * depth - 94, 1501) * bonusScale; update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, scaledBonus * 412 / 32768); thisThread->mainHistory[~us][((ss - 1)->currentMove).from_to()] << scaledBonus * 203 / 32768; if (type_of(pos.piece_on(prevSq)) != PAWN && ((ss - 1)->currentMove).type_of() != PROMOTION) thisThread->pawnHistory[pawn_structure_index(pos)][pos.piece_on(prevSq)][prevSq] << scaledBonus * 1040 / 32768; } // Bonus for prior capture countermove that caused the fail low else if (priorCapture && prevSq != SQ_NONE) { Piece capturedPiece = pos.captured_piece(); assert(capturedPiece != NO_PIECE); thisThread->captureHistory[pos.piece_on(prevSq)][prevSq][type_of(capturedPiece)] << 1080; } if (PvNode) bestValue = std::min(bestValue, maxValue); // If no good move is found and the previous position was ttPv, then the previous // opponent move is probably good and the new position is added to the search tree. if (bestValue <= alpha) ss->ttPv = ss->ttPv || (ss - 1)->ttPv; // Write gathered information in transposition table. Note that the // static evaluation is saved as it was before correction history. if (!excludedMove && !(rootNode && thisThread->pvIdx)) ttWriter.write(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv, bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, moveCount != 0 ? depth : std::min(MAX_PLY - 1, depth + 6), bestMove, unadjustedStaticEval, tt.generation()); // Adjust correction history if (!ss->inCheck && !(bestMove && pos.capture(bestMove)) && ((bestValue < ss->staticEval && bestValue < beta) // negative correction & no fail high || (bestValue > ss->staticEval && bestMove))) // positive correction & no fail low { auto bonus = std::clamp(int(bestValue - ss->staticEval) * depth / 8, -CORRECTION_HISTORY_LIMIT / 4, CORRECTION_HISTORY_LIMIT / 4); update_correction_history(pos, ss, *thisThread, bonus); } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // Quiescence search function, which is called by the main search function with // depth zero, or recursively with further decreasing depth. With depth <= 0, we // "should" be using static eval only, but tactical moves may confuse the static eval. // To fight this horizon effect, we implement this qsearch of tactical moves. // See https://www.chessprogramming.org/Horizon_Effect // and https://www.chessprogramming.org/Quiescence_Search template Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta) { static_assert(nodeType != Root); constexpr bool PvNode = nodeType == PV; assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); // Check if we have an upcoming move that draws by repetition if (alpha < VALUE_DRAW && pos.upcoming_repetition(ss->ply)) { alpha = value_draw(this->nodes); if (alpha >= beta) return alpha; } Move pv[MAX_PLY + 1]; StateInfo st; Key posKey; Move move, bestMove; Value bestValue, value, futilityBase; bool pvHit, givesCheck, capture; int moveCount; // Step 1. Initialize node if (PvNode) { (ss + 1)->pv = pv; ss->pv[0] = Move::none(); } Worker* thisThread = this; bestMove = Move::none(); ss->inCheck = pos.checkers(); moveCount = 0; // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) if (PvNode && thisThread->selDepth < ss->ply + 1) thisThread->selDepth = ss->ply + 1; // Step 2. Check for an immediate draw or maximum ply reached if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW; assert(0 <= ss->ply && ss->ply < MAX_PLY); // Step 3. Transposition table lookup posKey = pos.key(); auto [ttHit, ttData, ttWriter] = tt.probe(posKey); // Need further processing of the saved data ss->ttHit = ttHit; ttData.move = ttHit ? ttData.move : Move::none(); ttData.value = ttHit ? value_from_tt(ttData.value, ss->ply, pos.rule50_count()) : VALUE_NONE; pvHit = ttHit && ttData.is_pv; // At non-PV nodes we check for an early TT cutoff if (!PvNode && ttData.depth >= DEPTH_QS && is_valid(ttData.value) // Can happen when !ttHit or when access race in probe() && (ttData.bound & (ttData.value >= beta ? BOUND_LOWER : BOUND_UPPER))) return ttData.value; // Step 4. Static evaluation of the position Value unadjustedStaticEval = VALUE_NONE; if (ss->inCheck) bestValue = futilityBase = -VALUE_INFINITE; else { const auto correctionValue = correction_value(*thisThread, pos, ss); if (ss->ttHit) { // Never assume anything about values stored in TT unadjustedStaticEval = ttData.eval; if (!is_valid(unadjustedStaticEval)) unadjustedStaticEval = evaluate(pos); ss->staticEval = bestValue = to_corrected_static_eval(unadjustedStaticEval, correctionValue); // ttValue can be used as a better position evaluation if (is_valid(ttData.value) && !is_decisive(ttData.value) && (ttData.bound & (ttData.value > bestValue ? BOUND_LOWER : BOUND_UPPER))) bestValue = ttData.value; } else { // In case of null move search, use previous static eval with opposite sign unadjustedStaticEval = (ss - 1)->currentMove != Move::null() ? evaluate(pos) : -(ss - 1)->staticEval; ss->staticEval = bestValue = to_corrected_static_eval(unadjustedStaticEval, correctionValue); } // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!is_decisive(bestValue)) bestValue = (bestValue + beta) / 2; if (!ss->ttHit) ttWriter.write(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER, DEPTH_UNSEARCHED, Move::none(), unadjustedStaticEval, tt.generation()); return bestValue; } if (bestValue > alpha) alpha = bestValue; futilityBase = ss->staticEval + 376; } const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory, (ss - 2)->continuationHistory}; Square prevSq = ((ss - 1)->currentMove).is_ok() ? ((ss - 1)->currentMove).to_sq() : SQ_NONE; // Initialize a MovePicker object for the current position, and prepare to search // the moves. We presently use two stages of move generator in quiescence search: // captures, or evasions only when in check. MovePicker mp(pos, ttData.move, DEPTH_QS, &thisThread->mainHistory, &thisThread->lowPlyHistory, &thisThread->captureHistory, contHist, &thisThread->pawnHistory, ss->ply); // Step 5. Loop through all pseudo-legal moves until no moves remain or a beta // cutoff occurs. while ((move = mp.next_move()) != Move::none()) { assert(move.is_ok()); if (!pos.legal(move)) continue; givesCheck = pos.gives_check(move); capture = pos.capture_stage(move); moveCount++; // Step 6. Pruning if (!is_loss(bestValue)) { // Futility pruning and moveCount pruning if (!givesCheck && move.to_sq() != prevSq && !is_loss(futilityBase) && move.type_of() != PROMOTION) { if (moveCount > 2) continue; Value futilityValue = futilityBase + PieceValue[pos.piece_on(move.to_sq())]; // If static eval + value of piece we are going to capture is // much lower than alpha, we can prune this move. if (futilityValue <= alpha) { bestValue = std::max(bestValue, futilityValue); continue; } // If static exchange evaluation is low enough // we can prune this move. if (!pos.see_ge(move, alpha - futilityBase)) { bestValue = std::min(alpha, futilityBase); continue; } } // Continuation history based pruning if (!capture && (*contHist[0])[pos.moved_piece(move)][move.to_sq()] + thisThread->pawnHistory[pawn_structure_index(pos)][pos.moved_piece(move)] [move.to_sq()] <= 6218) continue; // Do not search moves with bad enough SEE values if (!pos.see_ge(move, -74)) continue; } // Step 7. Make and search the move Piece movedPiece = pos.moved_piece(move); do_move(pos, move, st, givesCheck); // Update the current move ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck][capture][movedPiece][move.to_sq()]; ss->continuationCorrectionHistory = &thisThread->continuationCorrectionHistory[movedPiece][move.to_sq()]; value = -qsearch(pos, ss + 1, -beta, -alpha); undo_move(pos, move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 8. Check for a new best move if (value > bestValue) { bestValue = value; if (value > alpha) { bestMove = move; if (PvNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss + 1)->pv); if (value < beta) // Update alpha here! alpha = value; else break; // Fail high } } } // Step 9. Check for mate // All legal moves have been searched. A special case: if we are // in check and no legal moves were found, it is checkmate. if (ss->inCheck && bestValue == -VALUE_INFINITE) { assert(!MoveList(pos).size()); return mated_in(ss->ply); // Plies to mate from the root } if (!is_decisive(bestValue) && bestValue > beta) bestValue = (bestValue + beta) / 2; Color us = pos.side_to_move(); if (!ss->inCheck && !moveCount && !pos.non_pawn_material(us) && type_of(pos.captured_piece()) >= ROOK) { if (!((us == WHITE ? shift(pos.pieces(us, PAWN)) : shift(pos.pieces(us, PAWN))) & ~pos.pieces())) // no pawn pushes available { pos.state()->checkersBB = Rank1BB; // search for legal king-moves only if (!MoveList(pos).size()) // stalemate bestValue = VALUE_DRAW; pos.state()->checkersBB = 0; } } // Save gathered info in transposition table. The static evaluation // is saved as it was before adjustment by correction history. ttWriter.write(posKey, value_to_tt(bestValue, ss->ply), pvHit, bestValue >= beta ? BOUND_LOWER : BOUND_UPPER, DEPTH_QS, bestMove, unadjustedStaticEval, tt.generation()); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } Depth Search::Worker::reduction(bool i, Depth d, int mn, int delta) const { int reductionScale = reductions[d] * reductions[mn]; return reductionScale - delta * 794 / rootDelta + !i * reductionScale * 205 / 512 + 1086; } // elapsed() returns the time elapsed since the search started. If the // 'nodestime' option is enabled, it will return the count of nodes searched // instead. This function is called to check whether the search should be // stopped based on predefined thresholds like time limits or nodes searched. // // elapsed_time() returns the actual time elapsed since the start of the search. // This function is intended for use only when printing PV outputs, and not used // for making decisions within the search algorithm itself. TimePoint Search::Worker::elapsed() const { return main_manager()->tm.elapsed([this]() { return threads.nodes_searched(); }); } TimePoint Search::Worker::elapsed_time() const { return main_manager()->tm.elapsed_time(); } Value Search::Worker::evaluate(const Position& pos) { return Eval::evaluate(networks[numaAccessToken], pos, accumulatorStack, refreshTable, optimism[pos.side_to_move()]); } namespace { // Adjusts a mate or TB score from "plies to mate from the root" to // "plies to mate from the current position". Standard scores are unchanged. // The function is called before storing a value in the transposition table. Value value_to_tt(Value v, int ply) { return is_win(v) ? v + ply : is_loss(v) ? v - ply : v; } // Inverse of value_to_tt(): it adjusts a mate or TB score from the transposition // table (which refers to the plies to mate/be mated from current position) to // "plies to mate/be mated (TB win/loss) from the root". However, to avoid // potentially false mate or TB scores related to the 50 moves rule and the // graph history interaction, we return the highest non-TB score instead. Value value_from_tt(Value v, int ply, int r50c) { if (!is_valid(v)) return VALUE_NONE; // handle TB win or better if (is_win(v)) { // Downgrade a potentially false mate score if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 100 - r50c) return VALUE_TB_WIN_IN_MAX_PLY - 1; // Downgrade a potentially false TB score. if (VALUE_TB - v > 100 - r50c) return VALUE_TB_WIN_IN_MAX_PLY - 1; return v - ply; } // handle TB loss or worse if (is_loss(v)) { // Downgrade a potentially false mate score. if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 100 - r50c) return VALUE_TB_LOSS_IN_MAX_PLY + 1; // Downgrade a potentially false TB score. if (VALUE_TB + v > 100 - r50c) return VALUE_TB_LOSS_IN_MAX_PLY + 1; return v + ply; } return v; } // Adds current move and appends child pv[] void update_pv(Move* pv, Move move, const Move* childPv) { for (*pv++ = move; childPv && *childPv != Move::none();) *pv++ = *childPv++; *pv = Move::none(); } // Updates stats at the end of search() when a bestMove is found void update_all_stats(const Position& pos, Stack* ss, Search::Worker& workerThread, Move bestMove, Square prevSq, ValueList& quietsSearched, ValueList& capturesSearched, Depth depth, Move ttMove, int moveCount) { CapturePieceToHistory& captureHistory = workerThread.captureHistory; Piece movedPiece = pos.moved_piece(bestMove); PieceType capturedPiece; int bonus = std::min(143 * depth - 89, 1496) + 302 * (bestMove == ttMove); int malus = std::min(737 * depth - 179, 3141) - 30 * moveCount; if (!pos.capture_stage(bestMove)) { update_quiet_histories(pos, ss, workerThread, bestMove, bonus * 1059 / 1024); // Decrease stats for all non-best quiet moves for (Move move : quietsSearched) update_quiet_histories(pos, ss, workerThread, move, -malus * 1310 / 1024); } else { // Increase stats for the best move in case it was a capture move capturedPiece = type_of(pos.piece_on(bestMove.to_sq())); captureHistory[movedPiece][bestMove.to_sq()][capturedPiece] << bonus * 1213 / 1024; } // Extra penalty for a quiet early move that was not a TT move in // previous ply when it gets refuted. if (prevSq != SQ_NONE && ((ss - 1)->moveCount == 1 + (ss - 1)->ttHit) && !pos.captured_piece()) update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, -malus * 580 / 1024); // Decrease stats for all non-best capture moves for (Move move : capturesSearched) { movedPiece = pos.moved_piece(move); capturedPiece = type_of(pos.piece_on(move.to_sq())); captureHistory[movedPiece][move.to_sq()][capturedPiece] << -malus * 1388 / 1024; } } // Updates histories of the move pairs formed by moves // at ply -1, -2, -3, -4, and -6 with current move. void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) { static constexpr std::array conthist_bonuses = { {{1, 1092}, {2, 631}, {3, 294}, {4, 517}, {5, 126}, {6, 445}}}; for (const auto [i, weight] : conthist_bonuses) { // Only update the first 2 continuation histories if we are in check if (ss->inCheck && i > 2) break; if (((ss - i)->currentMove).is_ok()) (*(ss - i)->continuationHistory)[pc][to] << bonus * weight / 1024; } } // Updates move sorting heuristics void update_quiet_histories( const Position& pos, Stack* ss, Search::Worker& workerThread, Move move, int bonus) { Color us = pos.side_to_move(); workerThread.mainHistory[us][move.from_to()] << bonus; // Untuned to prevent duplicate effort if (ss->ply < LOW_PLY_HISTORY_SIZE) workerThread.lowPlyHistory[ss->ply][move.from_to()] << bonus * 792 / 1024; update_continuation_histories(ss, pos.moved_piece(move), move.to_sq(), bonus * (bonus > 0 ? 1082 : 784) / 1024); int pIndex = pawn_structure_index(pos); workerThread.pawnHistory[pIndex][pos.moved_piece(move)][move.to_sq()] << bonus * (bonus > 0 ? 705 : 450) / 1024; } } // When playing with strength handicap, choose the best move among a set of // RootMoves using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_best(const RootMoves& rootMoves, size_t multiPV) { static PRNG rng(now()); // PRNG sequence should be non-deterministic // RootMoves are already sorted by score in descending order Value topScore = rootMoves[0].score; int delta = std::min(topScore - rootMoves[multiPV - 1].score, int(PawnValue)); int maxScore = -VALUE_INFINITE; double weakness = 120 - 2 * level; // Choose best move. For each move score we add two terms, both dependent on // weakness. One is deterministic and bigger for weaker levels, and one is // random. Then we choose the move with the resulting highest score. for (size_t i = 0; i < multiPV; ++i) { // This is our magic formula int push = int(weakness * int(topScore - rootMoves[i].score) + delta * (rng.rand() % int(weakness))) / 128; if (rootMoves[i].score + push >= maxScore) { maxScore = rootMoves[i].score + push; best = rootMoves[i].pv[0]; } } return best; } // Used to print debug info and, more importantly, to detect // when we are out of available time and thus stop the search. void SearchManager::check_time(Search::Worker& worker) { if (--callsCnt > 0) return; // When using nodes, ensure checking rate is not lower than 0.1% of nodes callsCnt = worker.limits.nodes ? std::min(512, int(worker.limits.nodes / 1024)) : 512; static TimePoint lastInfoTime = now(); TimePoint elapsed = tm.elapsed([&worker]() { return worker.threads.nodes_searched(); }); TimePoint tick = worker.limits.startTime + elapsed; if (tick - lastInfoTime >= 1000) { lastInfoTime = tick; dbg_print(); } // We should not stop pondering until told so by the GUI if (ponder) return; if ( // Later we rely on the fact that we can at least use the mainthread previous // root-search score and PV in a multithreaded environment to prove mated-in scores. worker.completedDepth >= 1 && ((worker.limits.use_time_management() && (elapsed > tm.maximum() || stopOnPonderhit)) || (worker.limits.movetime && elapsed >= worker.limits.movetime) || (worker.limits.nodes && worker.threads.nodes_searched() >= worker.limits.nodes))) worker.threads.stop = worker.threads.abortedSearch = true; } // Used to correct and extend PVs for moves that have a TB (but not a mate) score. // Keeps the search based PV for as long as it is verified to maintain the game // outcome, truncates afterwards. Finally, extends to mate the PV, providing a // possible continuation (but not a proven mating line). void syzygy_extend_pv(const OptionsMap& options, const Search::LimitsType& limits, Position& pos, RootMove& rootMove, Value& v) { auto t_start = std::chrono::steady_clock::now(); int moveOverhead = int(options["Move Overhead"]); bool rule50 = bool(options["Syzygy50MoveRule"]); // Do not use more than moveOverhead / 2 time, if time management is active auto time_abort = [&t_start, &moveOverhead, &limits]() -> bool { auto t_end = std::chrono::steady_clock::now(); return limits.use_time_management() && 2 * std::chrono::duration(t_end - t_start).count() > moveOverhead; }; std::list sts; // Step 0, do the rootMove, no correction allowed, as needed for MultiPV in TB. auto& stRoot = sts.emplace_back(); pos.do_move(rootMove.pv[0], stRoot); int ply = 1; // Step 1, walk the PV to the last position in TB with correct decisive score while (size_t(ply) < rootMove.pv.size()) { Move& pvMove = rootMove.pv[ply]; RootMoves legalMoves; for (const auto& m : MoveList(pos)) legalMoves.emplace_back(m); Tablebases::Config config = Tablebases::rank_root_moves(options, pos, legalMoves); RootMove& rm = *std::find(legalMoves.begin(), legalMoves.end(), pvMove); if (legalMoves[0].tbRank != rm.tbRank) break; ply++; auto& st = sts.emplace_back(); pos.do_move(pvMove, st); // Do not allow for repetitions or drawing moves along the PV in TB regime if (config.rootInTB && ((rule50 && pos.is_draw(ply)) || pos.is_repetition(ply))) { pos.undo_move(pvMove); ply--; break; } // Full PV shown will thus be validated and end in TB. // If we cannot validate the full PV in time, we do not show it. if (config.rootInTB && time_abort()) break; } // Resize the PV to the correct part rootMove.pv.resize(ply); // Step 2, now extend the PV to mate, as if the user explored syzygy-tables.info // using top ranked moves (minimal DTZ), which gives optimal mates only for simple // endgames e.g. KRvK. while (!(rule50 && pos.is_draw(0))) { if (time_abort()) break; RootMoves legalMoves; for (const auto& m : MoveList(pos)) { auto& rm = legalMoves.emplace_back(m); StateInfo tmpSI; pos.do_move(m, tmpSI); // Give a score of each move to break DTZ ties restricting opponent mobility, // but not giving the opponent a capture. for (const auto& mOpp : MoveList(pos)) rm.tbRank -= pos.capture(mOpp) ? 100 : 1; pos.undo_move(m); } // Mate found if (legalMoves.size() == 0) break; // Sort moves according to their above assigned rank. // This will break ties for moves with equal DTZ in rank_root_moves. std::stable_sort( legalMoves.begin(), legalMoves.end(), [](const Search::RootMove& a, const Search::RootMove& b) { return a.tbRank > b.tbRank; }); // The winning side tries to minimize DTZ, the losing side maximizes it Tablebases::Config config = Tablebases::rank_root_moves(options, pos, legalMoves, true); // If DTZ is not available we might not find a mate, so we bail out if (!config.rootInTB || config.cardinality > 0) break; ply++; Move& pvMove = legalMoves[0].pv[0]; rootMove.pv.push_back(pvMove); auto& st = sts.emplace_back(); pos.do_move(pvMove, st); } // Finding a draw in this function is an exceptional case, that cannot happen when rule50 is false or // during engine game play, since we have a winning score, and play correctly // with TB support. However, it can be that a position is draw due to the 50 move // rule if it has been been reached on the board with a non-optimal 50 move counter // (e.g. 8/8/6k1/3B4/3K4/4N3/8/8 w - - 54 106 ) which TB with dtz counter rounding // cannot always correctly rank. See also // https://github.com/official-stockfish/Stockfish/issues/5175#issuecomment-2058893495 // We adjust the score to match the found PV. Note that a TB loss score can be // displayed if the engine did not find a drawing move yet, but eventually search // will figure it out (e.g. 1kq5/q2r4/5K2/8/8/8/8/7Q w - - 96 1 ) if (pos.is_draw(0)) v = VALUE_DRAW; // Undo the PV moves for (auto it = rootMove.pv.rbegin(); it != rootMove.pv.rend(); ++it) pos.undo_move(*it); // Inform if we couldn't get a full extension in time if (time_abort()) sync_cout << "info string Syzygy based PV extension requires more time, increase Move Overhead as needed." << sync_endl; } void SearchManager::pv(Search::Worker& worker, const ThreadPool& threads, const TranspositionTable& tt, Depth depth) { const auto nodes = threads.nodes_searched(); auto& rootMoves = worker.rootMoves; auto& pos = worker.rootPos; size_t pvIdx = worker.pvIdx; size_t multiPV = std::min(size_t(worker.options["MultiPV"]), rootMoves.size()); uint64_t tbHits = threads.tb_hits() + (worker.tbConfig.rootInTB ? rootMoves.size() : 0); for (size_t i = 0; i < multiPV; ++i) { bool updated = rootMoves[i].score != -VALUE_INFINITE; if (depth == 1 && !updated && i > 0) continue; Depth d = updated ? depth : std::max(1, depth - 1); Value v = updated ? rootMoves[i].uciScore : rootMoves[i].previousScore; if (v == -VALUE_INFINITE) v = VALUE_ZERO; bool tb = worker.tbConfig.rootInTB && std::abs(v) <= VALUE_TB; v = tb ? rootMoves[i].tbScore : v; bool isExact = i != pvIdx || tb || !updated; // tablebase- and previous-scores are exact // Potentially correct and extend the PV, and in exceptional cases v if (is_decisive(v) && std::abs(v) < VALUE_MATE_IN_MAX_PLY && ((!rootMoves[i].scoreLowerbound && !rootMoves[i].scoreUpperbound) || isExact)) syzygy_extend_pv(worker.options, worker.limits, pos, rootMoves[i], v); std::string pv; for (Move m : rootMoves[i].pv) pv += UCIEngine::move(m, pos.is_chess960()) + " "; // Remove last whitespace if (!pv.empty()) pv.pop_back(); auto wdl = worker.options["UCI_ShowWDL"] ? UCIEngine::wdl(v, pos) : ""; auto bound = rootMoves[i].scoreLowerbound ? "lowerbound" : (rootMoves[i].scoreUpperbound ? "upperbound" : ""); InfoFull info; info.depth = d; info.selDepth = rootMoves[i].selDepth; info.multiPV = i + 1; info.score = {v, pos}; info.wdl = wdl; if (!isExact) info.bound = bound; TimePoint time = std::max(TimePoint(1), tm.elapsed_time()); info.timeMs = time; info.nodes = nodes; info.nps = nodes * 1000 / time; info.tbHits = tbHits; info.pv = pv; info.hashfull = tt.hashfull(); updates.onUpdateFull(info); } } // Called in case we have no ponder move before exiting the search, // for instance, in case we stop the search during a fail high at root. // We try hard to have a ponder move to return to the GUI, // otherwise in case of 'ponder on' we have nothing to think about. bool RootMove::extract_ponder_from_tt(const TranspositionTable& tt, Position& pos) { StateInfo st; assert(pv.size() == 1); if (pv[0] == Move::none()) return false; pos.do_move(pv[0], st, &tt); auto [ttHit, ttData, ttWriter] = tt.probe(pos.key()); if (ttHit) { if (MoveList(pos).contains(ttData.move)) pv.push_back(ttData.move); } pos.undo_move(pv[0]); return pv.size() > 1; } } // namespace Stockfish