/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2009 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include "bitcount.h" #include "pawns.h" #include "position.h" //// //// Local definitions //// namespace { /// Constants and variables // Doubled pawn penalty by file, middle game const Value DoubledPawnMidgamePenalty[8] = { Value(13), Value(20), Value(23), Value(23), Value(23), Value(23), Value(20), Value(13) }; // Doubled pawn penalty by file, endgame const Value DoubledPawnEndgamePenalty[8] = { Value(43), Value(48), Value(48), Value(48), Value(48), Value(48), Value(48), Value(43) }; // Isolated pawn penalty by file, middle game const Value IsolatedPawnMidgamePenalty[8] = { Value(25), Value(36), Value(40), Value(40), Value(40), Value(40), Value(36), Value(25) }; // Isolated pawn penalty by file, endgame const Value IsolatedPawnEndgamePenalty[8] = { Value(30), Value(35), Value(35), Value(35), Value(35), Value(35), Value(35), Value(30) }; // Backward pawn penalty by file, middle game const Value BackwardPawnMidgamePenalty[8] = { Value(20), Value(29), Value(33), Value(33), Value(33), Value(33), Value(29), Value(20) }; // Backward pawn penalty by file, endgame const Value BackwardPawnEndgamePenalty[8] = { Value(28), Value(31), Value(31), Value(31), Value(31), Value(31), Value(31), Value(28) }; // Pawn chain membership bonus by file, middle game const Value ChainMidgameBonus[8] = { Value(11), Value(13), Value(13), Value(14), Value(14), Value(13), Value(13), Value(11) }; // Pawn chain membership bonus by file, endgame const Value ChainEndgameBonus[8] = { Value(-1), Value(-1), Value(-1), Value(-1), Value(-1), Value(-1), Value(-1), Value(-1) }; // Candidate passed pawn bonus by rank, middle game const Value CandidateMidgameBonus[8] = { Value( 0), Value( 6), Value(6), Value(14), Value(34), Value(83), Value(0), Value( 0) }; // Candidate passed pawn bonus by rank, endgame const Value CandidateEndgameBonus[8] = { Value( 0), Value( 13), Value(13), Value(29), Value(68), Value(166), Value( 0), Value( 0) }; // Pawn storm tables for positions with opposite castling const int QStormTable[64] = { 0, 0, 0, 0, 0, 0, 0, 0, -22,-22,-22,-14,-6, 0, 0, 0, -6,-10,-10,-10,-6, 0, 0, 0, 4, 12, 16, 12, 4, 0, 0, 0, 16, 23, 23, 16, 0, 0, 0, 0, 23, 31, 31, 23, 0, 0, 0, 0, 23, 31, 31, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; const int KStormTable[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-10,-19,-28,-33,-33, 0, 0, 0,-10,-15,-19,-24,-24, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 10, 19, 19, 0, 0, 0, 0, 1, 19, 31, 27, 0, 0, 0, 0, 0, 22, 31, 22, 0, 0, 0, 0, 0, 0, 0, 0 }; // Pawn storm open file bonuses by file const int16_t KStormOpenFileBonus[8] = { 31, 31, 18, 0, 0, 0, 0, 0 }; const int16_t QStormOpenFileBonus[8] = { 0, 0, 0, 0, 0, 26, 42, 26 }; // Pawn storm lever bonuses by file const int StormLeverBonus[8] = { -8, -8, -13, 0, 0, -13, -8, -8 }; } //// //// Functions //// /// Constructor PawnInfoTable::PawnInfoTable(unsigned numOfEntries) { size = numOfEntries; entries = new PawnInfo[size]; if (!entries) { std::cerr << "Failed to allocate " << (numOfEntries * sizeof(PawnInfo)) << " bytes for pawn hash table." << std::endl; Application::exit_with_failure(); } } /// Destructor PawnInfoTable::~PawnInfoTable() { delete [] entries; } /// PawnInfo::clear() resets to zero the PawnInfo entry. Note that /// kingSquares[] is initialized to SQ_NONE instead. void PawnInfo::clear() { memset(this, 0, sizeof(PawnInfo)); kingSquares[WHITE] = kingSquares[BLACK] = SQ_NONE; } /// PawnInfoTable::get_pawn_info() takes a position object as input, computes /// a PawnInfo object, and returns a pointer to it. The result is also /// stored in a hash table, so we don't have to recompute everything when /// the same pawn structure occurs again. PawnInfo* PawnInfoTable::get_pawn_info(const Position& pos) { assert(pos.is_ok()); Key key = pos.get_pawn_key(); int index = int(key & (size - 1)); PawnInfo* pi = entries + index; // If pi->key matches the position's pawn hash key, it means that we // have analysed this pawn structure before, and we can simply return // the information we found the last time instead of recomputing it. if (pi->key == key) return pi; // Clear the PawnInfo object, and set the key pi->clear(); pi->key = key; Value mgValue[2] = {Value(0), Value(0)}; Value egValue[2] = {Value(0), Value(0)}; // Loop through the pawns for both colors for (Color us = WHITE; us <= BLACK; us++) { Color them = opposite_color(us); Bitboard ourPawns = pos.pieces(us); Bitboard theirPawns = pos.pieces(them); Bitboard pawns = ourPawns; // Initialize pawn storm scores by giving bonuses for open files for (File f = FILE_A; f <= FILE_H; f++) if (!(pawns & file_bb(f))) { pi->ksStormValue[us] += KStormOpenFileBonus[f]; pi->qsStormValue[us] += QStormOpenFileBonus[f]; pi->halfOpenFiles[us] |= (1 << f); } // Loop through all pawns of the current color and score each pawn while (pawns) { Square s = pop_1st_bit(&pawns); File f = square_file(s); Rank r = square_rank(s); assert(pos.piece_on(s) == piece_of_color_and_type(us, PAWN)); // Passed, isolated or doubled pawn? bool passed = Position::pawn_is_passed(theirPawns, us, s); bool isolated = Position::pawn_is_isolated(ourPawns, s); bool doubled = Position::pawn_is_doubled(ourPawns, us, s); // We calculate kingside and queenside pawn storm // scores for both colors. These are used when evaluating // middle game positions with opposite side castling. // // Each pawn is given a base score given by a piece square table // (KStormTable[] or QStormTable[]). Pawns which seem to have good // chances of creating an open file by exchanging itself against an // enemy pawn on an adjacent file gets an additional bonus. // Kingside pawn storms int bonus = KStormTable[relative_square(us, s)]; if (f >= FILE_F) { Bitboard b = outpost_mask(us, s) & theirPawns & (FileFBB | FileGBB | FileHBB); while (b) { Square s2 = pop_1st_bit(&b); if (!(theirPawns & neighboring_files_bb(s2) & rank_bb(s2))) { // The enemy pawn has no pawn beside itself, which makes it // particularly vulnerable. Big bonus, especially against a // weakness on the rook file. if (square_file(s2) == FILE_H) bonus += 4*StormLeverBonus[f] - 8*square_distance(s, s2); else bonus += 2*StormLeverBonus[f] - 4*square_distance(s, s2); } else // There is at least one enemy pawn beside the enemy pawn we look // at, which means that the pawn has somewhat better chances of // defending itself by advancing. Smaller bonus. bonus += StormLeverBonus[f] - 2*square_distance(s, s2); } } pi->ksStormValue[us] += bonus; // Queenside pawn storms bonus = QStormTable[relative_square(us, s)]; if (f <= FILE_C) { Bitboard b = outpost_mask(us, s) & theirPawns & (FileABB | FileBBB | FileCBB); while (b) { Square s2 = pop_1st_bit(&b); if (!(theirPawns & neighboring_files_bb(s2) & rank_bb(s2))) { // The enemy pawn has no pawn beside itself, which makes it // particularly vulnerable. Big bonus, especially against a // weakness on the rook file. if (square_file(s2) == FILE_A) bonus += 4*StormLeverBonus[f] - 16*square_distance(s, s2); else bonus += 2*StormLeverBonus[f] - 8*square_distance(s, s2); } else // There is at least one enemy pawn beside the enemy pawn we look // at, which means that the pawn has somewhat better chances of // defending itself by advancing. Smaller bonus. bonus += StormLeverBonus[f] - 4*square_distance(s, s2); } } pi->qsStormValue[us] += bonus; // Member of a pawn chain (but not the backward one)? We could speed up // the test a little by introducing an array of masks indexed by color // and square for doing the test, but because everything is hashed, // it probably won't make any noticable difference. bool chain = ourPawns & neighboring_files_bb(f) & (rank_bb(r) | rank_bb(r - (us == WHITE ? 1 : -1))); // Test for backward pawn // // If the pawn is passed, isolated, or member of a pawn chain // it cannot be backward. If can capture an enemy pawn or if // there are friendly pawns behind on neighboring files it cannot // be backward either. bool backward; if ( passed || isolated || chain || (pos.pawn_attacks(us, s) & theirPawns) || (ourPawns & behind_bb(us, r) & neighboring_files_bb(f))) backward = false; else { // We now know that there are no friendly pawns beside or behind this // pawn on neighboring files. We now check whether the pawn is // backward by looking in the forward direction on the neighboring // files, and seeing whether we meet a friendly or an enemy pawn first. Bitboard b = pos.pawn_attacks(us, s); if (us == WHITE) { for ( ; !(b & (ourPawns | theirPawns)); b <<= 8); backward = (b | (b << 8)) & theirPawns; } else { for ( ; !(b & (ourPawns | theirPawns)); b >>= 8); backward = (b | (b >> 8)) & theirPawns; } } // Test for candidate passed pawn bool candidate; candidate = !passed && !(theirPawns & file_bb(f)) && ( count_1s_max_15(neighboring_files_bb(f) & (behind_bb(us, r) | rank_bb(r)) & ourPawns) - count_1s_max_15(neighboring_files_bb(f) & in_front_bb(us, r) & theirPawns) >= 0); // In order to prevent doubled passed pawns from receiving a too big // bonus, only the frontmost passed pawn on each file is considered as // a true passed pawn. if (passed && (ourPawns & squares_in_front_of(us, s))) passed = false; // Score this pawn if (passed) set_bit(&(pi->passedPawns), s); if (isolated) { mgValue[us] -= IsolatedPawnMidgamePenalty[f]; egValue[us] -= IsolatedPawnEndgamePenalty[f]; if (!(theirPawns & file_bb(f))) { mgValue[us] -= IsolatedPawnMidgamePenalty[f] / 2; egValue[us] -= IsolatedPawnEndgamePenalty[f] / 2; } } if (doubled) { mgValue[us] -= DoubledPawnMidgamePenalty[f]; egValue[us] -= DoubledPawnEndgamePenalty[f]; } if (backward) { mgValue[us] -= BackwardPawnMidgamePenalty[f]; egValue[us] -= BackwardPawnEndgamePenalty[f]; if (!(theirPawns & file_bb(f))) { mgValue[us] -= BackwardPawnMidgamePenalty[f] / 2; egValue[us] -= BackwardPawnEndgamePenalty[f] / 2; } } if (chain) { mgValue[us] += ChainMidgameBonus[f]; egValue[us] += ChainEndgameBonus[f]; } if (candidate) { mgValue[us] += CandidateMidgameBonus[relative_rank(us, s)]; egValue[us] += CandidateEndgameBonus[relative_rank(us, s)]; } } // while(pawns) } // for(colors) pi->mgValue = int16_t(mgValue[WHITE] - mgValue[BLACK]); pi->egValue = int16_t(egValue[WHITE] - egValue[BLACK]); return pi; } /// PawnInfo::updateShelter calculates and caches king shelter. It is called /// only when king square changes, about 20% of total get_king_shelter() calls. int PawnInfo::updateShelter(const Position& pos, Color c, Square ksq) { unsigned shelter = 0; Bitboard pawns = pos.pieces(c) & this_and_neighboring_files_bb(ksq); unsigned r = ksq & (7 << 3); for (int i = 1, k = (c ? -8 : 8); i < 4; i++) { r += k; shelter += BitCount8Bit[(pawns >> r) & 0xFF] * (128 >> i); } kingSquares[c] = ksq; kingShelters[c] = shelter; return shelter; }