/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef MISC_H_INCLUDED #define MISC_H_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include "types.h" const std::string engine_info(bool to_uci = false); const std::string compiler_info(); void prefetch(void* addr); void start_logger(const std::string& fname); void* std_aligned_alloc(size_t alignment, size_t size); void std_aligned_free(void* ptr); void* aligned_large_pages_alloc(size_t size); // memory aligned by page size, min alignment: 4096 bytes void aligned_large_pages_free(void* mem); // nop if mem == nullptr void dbg_hit_on(bool b); void dbg_hit_on(bool c, bool b); void dbg_mean_of(int v); void dbg_print(); typedef std::chrono::milliseconds::rep TimePoint; // A value in milliseconds static_assert(sizeof(TimePoint) == sizeof(int64_t), "TimePoint should be 64 bits"); inline TimePoint now() { return std::chrono::duration_cast (std::chrono::steady_clock::now().time_since_epoch()).count(); } template struct HashTable { Entry* operator[](Key key) { return &table[(uint32_t)key & (Size - 1)]; } private: std::vector table = std::vector(Size); // Allocate on the heap }; enum SyncCout { IO_LOCK, IO_UNLOCK }; std::ostream& operator<<(std::ostream&, SyncCout); #define sync_cout std::cout << IO_LOCK #define sync_endl std::endl << IO_UNLOCK // This logger allows printing many parts in a region atomically // but doesn't block the threads trying to append to other regions. // Instead if some region tries to pring while other region holds // the lock the messages are queued to be printed as soon as the // current region releases the lock. struct SynchronizedRegionLogger { private: using RegionId = std::uint64_t; struct RegionLock { RegionLock(SynchronizedRegionLogger& log, RegionId id) : logger(&log), region_id(id), is_held(true) { } RegionLock(const RegionLock&) = delete; RegionLock& operator=(const RegionLock&) = delete; RegionLock(RegionLock&& other) : logger(other.logger), region_id(other.region_id), is_held(other.is_held) { other.logger = nullptr; other.is_held = false; } RegionLock& operator=(RegionLock&& other) { if (is_held && logger != nullptr) { logger->release_region(region_id); } logger = other.logger; region_id = other.region_id; is_held = other.is_held; other.is_held = false; return *this; } ~RegionLock() { unlock(); } void unlock() { if (is_held) { is_held = false; if (logger != nullptr) logger->release_region(region_id); } } template RegionLock& operator << (const T& value) { if (logger != nullptr) logger->write(region_id, value); return *this; } private: SynchronizedRegionLogger* logger; RegionId region_id; bool is_held; }; struct Region { Region(RegionId rid) : id(rid), is_held(true) {} std::vector pending_parts; RegionId id; bool is_held; }; RegionId init_next_region() { static RegionId next_id = 0; std::lock_guard lock(mutex); const auto id = next_id++; regions.emplace_back(id); return id; } template void write(RegionId id, const T& value) { std::lock_guard lock(mutex); if (regions.empty()) return; if (id == regions.front().id) { // We can just directly print to the output because // we are at the front of the region queue. out << value; } else { // We have to schedule the print until previous regions are // processed auto* region = find_region_nolock(id); if (region == nullptr) return; std::stringstream ss; ss << value; region->pending_parts.emplace_back(std::move(ss).str()); } } std::ostream& out; std::deque regions; std::mutex mutex; Region* find_region_nolock(RegionId id) { // Linear search because the amount of concurrent regions should be small. auto it = std::find_if( regions.begin(), regions.end(), [id](const Region& r) { return r.id == id; }); if (it == regions.end()) return nullptr; else return &*it; } void release_region(RegionId id) { std::lock_guard lock(mutex); auto* region = find_region_nolock(id); if (region == nullptr) return; region->is_held = false; process_backlog_nolock(); } void process_backlog_nolock() { while(!regions.empty()) { auto& region = regions.front(); for(auto& part : region.pending_parts) { out << part; } // If the region is still held then we don't // want to start printing stuff from the next region. if (region.is_held) break; regions.pop_front(); } } public: SynchronizedRegionLogger(std::ostream& s) : out(s) { } [[nodiscard]] RegionLock new_region() { const auto id = init_next_region(); return RegionLock(*this, id); } }; extern SynchronizedRegionLogger sync_region_cout; /// xorshift64star Pseudo-Random Number Generator /// This class is based on original code written and dedicated /// to the public domain by Sebastiano Vigna (2014). /// It has the following characteristics: /// /// - Outputs 64-bit numbers /// - Passes Dieharder and SmallCrush test batteries /// - Does not require warm-up, no zeroland to escape /// - Internal state is a single 64-bit integer /// - Period is 2^64 - 1 /// - Speed: 1.60 ns/call (Core i7 @3.40GHz) /// /// For further analysis see /// static uint64_t string_hash(const std::string& str) { uint64_t h = 525201411107845655ull; for (auto c : str) { h ^= static_cast(c); h *= 0x5bd1e9955bd1e995ull; h ^= h >> 47; } return h; } class PRNG { uint64_t s; uint64_t rand64() { s ^= s >> 12, s ^= s << 25, s ^= s >> 27; return s * 2685821657736338717LL; } public: PRNG() { set_seed_from_time(); } PRNG(uint64_t seed) : s(seed) { assert(seed); } PRNG(const std::string& seed) { set_seed(seed); } template T rand() { return T(rand64()); } /// Special generator used to fast init magic numbers. /// Output values only have 1/8th of their bits set on average. template T sparse_rand() { return T(rand64() & rand64() & rand64()); } // Returns a random number from 0 to n-1. (Not uniform distribution, but this is enough in reality) uint64_t rand(uint64_t n) { return rand() % n; } // Return the random seed used internally. uint64_t get_seed() const { return s; } void set_seed(uint64_t seed) { s = seed; } uint64_t next_random_seed() { uint64_t seed = 0; for(int i = 0; i < 64; ++i) { const auto off = rand64() % 64; seed |= (rand64() & (uint64_t(1) << off)) >> off; seed <<= 1; } return seed; } void set_seed_from_time() { set_seed(std::chrono::system_clock::now().time_since_epoch().count()); } void set_seed(const std::string& str) { if (str.empty()) { set_seed_from_time(); } else if (std::all_of(str.begin(), str.end(), [](char c) { return std::isdigit(c);} )) { set_seed(std::stoull(str)); } else { set_seed(string_hash(str)); } } }; // Display a random seed. (For debugging) inline std::ostream& operator<<(std::ostream& os, PRNG& prng) { os << "PRNG::seed = " << std::hex << prng.get_seed() << std::dec; return os; } inline uint64_t mul_hi64(uint64_t a, uint64_t b) { #if defined(__GNUC__) && defined(IS_64BIT) __extension__ typedef unsigned __int128 uint128; return ((uint128)a * (uint128)b) >> 64; #else uint64_t aL = (uint32_t)a, aH = a >> 32; uint64_t bL = (uint32_t)b, bH = b >> 32; uint64_t c1 = (aL * bL) >> 32; uint64_t c2 = aH * bL + c1; uint64_t c3 = aL * bH + (uint32_t)c2; return aH * bH + (c2 >> 32) + (c3 >> 32); #endif } /// Under Windows it is not possible for a process to run on more than one /// logical processor group. This usually means to be limited to use max 64 /// cores. To overcome this, some special platform specific API should be /// called to set group affinity for each thread. Original code from Texel by /// Peter Österlund. namespace WinProcGroup { void bindThisThread(size_t idx); } // sleep for the specified number of milliseconds. extern void sleep(int ms); // Returns a string that represents the current time. (Used for log output when learning evaluation function) std::string now_string(); // When compiled with gcc/clang such as msys2, Windows Subsystem for Linux, // In C++ std::ifstream, ::read() is a wrapper for that because it is not possible to read and write files larger than 2GB in one shot. // // callback_func of the argument of read_file_to_memory() uses the file size as an argument when the file can be opened // It will be called back, so if you allocate a buffer and pass a function that returns the first pointer, it will be read there. // These functions return non-zero on error, such as when the file cannot be found. // // Also, if the buffer cannot be allocated in the callback function or if the file size is different from the expected file size, // Return nullptr. At this time, read_file_to_memory() interrupts reading and returns with an error. std::uint64_t get_file_size(std::fstream& fs); int read_file_to_memory(std::string filename, std::function callback_func); int write_memory_to_file(std::string filename, void* ptr, uint64_t size); // -------------------- // async version of PRNG // -------------------- // async version of PRNG struct AsyncPRNG { AsyncPRNG() : prng() { } AsyncPRNG(uint64_t seed) : prng(seed) { assert(seed); } AsyncPRNG(const std::string& seed) : prng(seed) { } // [ASYNC] Extract one random number. template T rand() { std::unique_lock lk(mutex); return prng.rand(); } // [ASYNC] Returns a random number from 0 to n-1. (Not uniform distribution, but this is enough in reality) uint64_t rand(uint64_t n) { std::unique_lock lk(mutex); return prng.rand(n); } // Return the random seed used internally. uint64_t get_seed() const { return prng.get_seed(); } protected: std::mutex mutex; PRNG prng; }; // Display a random seed. (For debugging) inline std::ostream& operator<<(std::ostream& os, AsyncPRNG& prng) { os << "AsyncPRNG::seed = " << std::hex << prng.get_seed() << std::dec; return os; } // -------------------- // Math // -------------------- // Mathematical function used for progress calculation and learning namespace Math { inline double sigmoid(double x) { return 1.0 / (1.0 + std::exp(-x)); } inline double dsigmoid(double x) { // Sigmoid function // f(x) = 1/(1+exp(-x)) // the first derivative is // f'(x) = df/dx = f(x)・{ 1-f(x)} // becomes return sigmoid(x) * (1.0 - sigmoid(x)); } // Clip v so that it fits between [lo,hi]. // * In Stockfish, this function is written in bitboard.h. template constexpr const T& clamp(const T& v, const T& lo, const T& hi) { return v < lo ? lo : v > hi ? hi : v; } } namespace Algo { // Fisher-Yates template void shuffle(std::vector& buf, Rng&& prng) { const auto size = buf.size(); for (uint64_t i = 0; i < size; ++i) std::swap(buf[i], buf[prng.rand(size - i) + i]); } // split the string inline std::vector split(const std::string& input, char delimiter) { std::istringstream stream(input); std::string field; std::vector fields; while (std::getline(stream, field, delimiter)) { fields.push_back(field); } return fields; } } // -------------------- // Path // -------------------- // Something like Path class in C#. File name manipulation. // Match with the C# method name. struct Path { // Combine the path name and file name and return it. // If the folder name is not an empty string, append it if there is no'/' or'\\' at the end. static std::string combine(const std::string& folder, const std::string& filename) { if (folder.length() >= 1 && *folder.rbegin() != '/' && *folder.rbegin() != '\\') return folder + "/" + filename; return folder + filename; } // Get the file name part (excluding the folder name) from the full path expression. static std::string get_file_name(const std::string& path) { // I don't know which "\" or "/" is used. auto path_index1 = path.find_last_of("\\") + 1; auto path_index2 = path.find_last_of("/") + 1; auto path_index = std::max(path_index1, path_index2); return path.substr(path_index); } }; // It is ignored when new even though alignas is specified & because it is ignored when the STL container allocates memory, // A custom allocator used for that. template class AlignedAllocator { public: using value_type = T; AlignedAllocator() {} AlignedAllocator(const AlignedAllocator&) {} AlignedAllocator(AlignedAllocator&&) {} template AlignedAllocator(const AlignedAllocator&) {} T* allocate(std::size_t n) { return (T*)std_aligned_alloc(alignof(T), n * sizeof(T)); } void deallocate(T* p, std::size_t ) { std_aligned_free(p); } }; // -------------------- // Dependency Wrapper // -------------------- namespace Dependency { // In the Linux environment, if you getline() the text file is'\r\n' // Since'\r' remains at the end, write a wrapper to remove this'\r'. // So when calling getline() on fstream, // just write getline() instead of std::getline() and use this function. extern bool getline(std::ifstream& fs, std::string& s); } namespace CommandLine { void init(int argc, char* argv[]); extern std::string binaryDirectory; // path of the executable directory extern std::string workingDirectory; // path of the working directory } #endif // #ifndef MISC_H_INCLUDED