/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer AffineTransform of NNUE evaluation function #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED #include #include "../nnue_common.h" #include #include #include namespace Eval::NNUE::Layers { // Affine transformation layer template class AffineTransform { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::int32_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType kInputDimensions = PreviousLayer::kOutputDimensions; static constexpr IndexType kOutputDimensions = OutputDimensions; static constexpr IndexType kPaddedInputDimensions = CeilToMultiple(kInputDimensions, kMaxSimdWidth); // Size of forward propagation buffer used in this layer static constexpr std::size_t kSelfBufferSize = CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t kBufferSize = PreviousLayer::kBufferSize + kSelfBufferSize; static constexpr int kLayerIndex = PreviousLayer::kLayerIndex + 1; // Hash value embedded in the evaluation file static constexpr std::uint32_t GetHashValue() { std::uint32_t hash_value = 0xCC03DAE4u; hash_value += kOutputDimensions; hash_value ^= PreviousLayer::GetHashValue() >> 1; hash_value ^= PreviousLayer::GetHashValue() << 31; return hash_value; } static std::string get_name() { return "AffineTransform[" + std::to_string(kOutputDimensions) + "<-" + std::to_string(kInputDimensions) + "]"; } // A string that represents the structure from the input layer to this layer static std::string get_structure_string() { return get_name() + "(" + PreviousLayer::get_structure_string() + ")"; } static std::string get_layers_info() { std::string info = PreviousLayer::get_layers_info(); info += "\n - "; info += std::to_string(kLayerIndex); info += " - "; info += get_name(); return info; } // Read network parameters bool ReadParameters(std::istream& stream) { if (!previous_layer_.ReadParameters(stream)) return false; for (std::size_t i = 0; i < kOutputDimensions; ++i) biases_[i] = read_little_endian(stream); for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i) weights_[i] = read_little_endian(stream); return !stream.fail(); } // write parameters bool WriteParameters(std::ostream& stream) const { if (!previous_layer_.WriteParameters(stream)) return false; stream.write(reinterpret_cast(biases_), kOutputDimensions * sizeof(BiasType)); stream.write(reinterpret_cast(weights_), kOutputDimensions * kPaddedInputDimensions * sizeof(WeightType)); return !stream.fail(); } // Forward propagation const OutputType* Propagate( const TransformedFeatureType* transformed_features, char* buffer) const { const auto input = previous_layer_.Propagate( transformed_features, buffer + kSelfBufferSize); #if defined (USE_AVX512) [[maybe_unused]] const __m512i kOnes512 = _mm512_set1_epi16(1); [[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int { return _mm512_reduce_add_epi32(sum) + bias; }; // This function takes // sum0 = [xmm0a, xmm0b, xmm0c, xmm0d] // sum1 = [xmm1a, xmm1b, xmm1c, xmm1d] // sum2 = [xmm2a, xmm2b, xmm2c, xmm2d] // sum3 = [xmm3a, xmm3b, xmm3c, xmm3d] // and returns // ret = [ // reduce_add_epi32(xmm0a), reduce_add_epi32(xmm1a), reduce_add_epi32(xmm2a), reduce_add_epi32(xmm3a), // reduce_add_epi32(xmm0b), reduce_add_epi32(xmm1b), reduce_add_epi32(xmm2b), reduce_add_epi32(xmm3b), // reduce_add_epi32(xmm0c), reduce_add_epi32(xmm1c), reduce_add_epi32(xmm2c), reduce_add_epi32(xmm3c), // reduce_add_epi32(xmm0d), reduce_add_epi32(xmm1d), reduce_add_epi32(xmm2d), reduce_add_epi32(xmm3d) // ] [[maybe_unused]] auto m512_hadd128x16_interleave = []( __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) -> __m512i { __m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1); __m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1); __m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3); __m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3); __m512i sum01 = _mm512_add_epi32(sum01a, sum01b); __m512i sum23 = _mm512_add_epi32(sum23a, sum23b); __m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23); __m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23); return _mm512_add_epi32(sum0123a, sum0123b); }; [[maybe_unused]] auto m512_haddx4 = [m512_hadd128x16_interleave]( __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m128i bias) -> __m128i { __m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); __m256i sum256lo = _mm512_castsi512_si256(sum); __m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1); sum256lo = _mm256_add_epi32(sum256lo, sum256hi); __m128i sum128lo = _mm256_castsi256_si128(sum256lo); __m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1); return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); }; [[maybe_unused]] auto m512_haddx8 = [m512_hadd128x16_interleave]( __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m512i sum4, __m512i sum5, __m512i sum6, __m512i sum7, __m256i bias) -> __m256i { __m512i suma = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); __m512i sumb = m512_hadd128x16_interleave(sum4, sum5, sum6, sum7); __m512i indices0 = _mm512_setr_epi64(0, 1, 8, 9, 4, 5, 12, 13); __m512i indices1 = _mm512_setr_epi64(2, 3, 10, 11, 6, 7, 14, 15); __m512i x = _mm512_add_epi32( _mm512_permutex2var_epi64(suma, indices0, sumb), _mm512_permutex2var_epi64(suma, indices1, sumb)); __m256i sum256lo = _mm512_castsi512_si256(x); __m256i sum256hi = _mm512_extracti64x4_epi64(x, 1); return _mm256_add_epi32(_mm256_add_epi32(sum256lo, sum256hi), bias); }; [[maybe_unused]] auto m512_hadd256x8 =[m512_hadd128x16_interleave]( __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m256i bias) -> __m256i { __m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); __m512i indices = _mm512_setr_epi32( 0, 4, 8, 12, 2, 6, 10, 14, 1, 5, 9, 13, 3, 7, 11, 15); sum = _mm512_permutexvar_epi32(indices, sum); __m256i sum256lo = _mm512_castsi512_si256(sum); __m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1); return _mm256_add_epi32(_mm256_hadd_epi32(sum256lo, sum256hi), bias); }; [[maybe_unused]] auto m512_hadd256x16 = [m512_hadd128x16_interleave]( __m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3, __m512i sum4, __m512i sum5, __m512i sum6, __m512i sum7, __m512i bias) -> __m512i { __m512i suma = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3); __m512i sumb = m512_hadd128x16_interleave(sum4, sum5, sum6, sum7); __m512i indices0 = _mm512_setr_epi64(0, 1, 8, 9, 4, 5, 12, 13); __m512i indices1 = _mm512_setr_epi64(2, 3, 10, 11, 6, 7, 14, 15); __m512i x = _mm512_add_epi32( _mm512_permutex2var_epi64(suma, indices0, sumb), _mm512_permutex2var_epi64(suma, indices1, sumb)); __m512i indices = _mm512_setr_epi32(0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15); return _mm512_add_epi32(_mm512_permutexvar_epi32(indices, x), bias); }; #if defined (USE_VNNI) [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) { acc = _mm512_dpbusd_epi32(acc, a, b); #else [[maybe_unused]] auto m512_dpbusd_epi32 = [=](__m512i a, __m512i b) -> __m512i { __m512i product0 = _mm512_maddubs_epi16(a, b); return _mm512_madd_epi16(product0, kOnes512); #endif }; #endif #if defined (USE_AVX2) [[maybe_unused]] const __m256i kOnes256 = _mm256_set1_epi16(1); [[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int { __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1)); sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC)); sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB)); return _mm_cvtsi128_si32(sum128) + bias; }; [[maybe_unused]] auto m256_haddx4 = [](__m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3, __m128i bias) -> __m128i { sum0 = _mm256_hadd_epi32(sum0, sum1); sum2 = _mm256_hadd_epi32(sum2, sum3); sum0 = _mm256_hadd_epi32(sum0, sum2); __m128i sum128lo = _mm256_castsi256_si128(sum0); __m128i sum128hi = _mm256_extracti128_si256(sum0, 1); return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); }; #if defined (USE_VNNI) [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) { acc = _mm256_dpbusd_epi32(acc, a, b); #else [[maybe_unused]] auto m256_dpbusd_epi32 = [=](__m256i a, __m256i b) -> __m256i { __m256i product0 = _mm256_maddubs_epi16(a, b); return _mm256_madd_epi16(product0, kOnes256); #endif }; #endif #if defined (USE_SSSE3) [[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1); [[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int { sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB return _mm_cvtsi128_si32(sum) + bias; }; [[maybe_unused]] auto m128_haddx4 = [](__m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3, __m128i bias) -> __m128i { sum0 = _mm_hadd_epi32(sum0, sum1); sum2 = _mm_hadd_epi32(sum2, sum3); sum0 = _mm_hadd_epi32(sum0, sum2); return _mm_add_epi32(sum0, bias); }; [[maybe_unused]] auto m128_dpbusd_epi32 = [=](__m128i a, __m128i b) -> __m128i { __m128i product0 = _mm_maddubs_epi16(a, b); return _mm_madd_epi16(product0, kOnes128); }; #endif #if defined (USE_AVX512) constexpr IndexType kNumChunks512 = kPaddedInputDimensions / (kSimdWidth * 2); constexpr IndexType kNumChunks256 = kPaddedInputDimensions / kSimdWidth; const auto output = reinterpret_cast(buffer); // Since to saturate a zmm register it takes 64 bytes we // cannot use AVX512 for the smaller affine transforms. // Instead we fallback to a AVX2 implementation if the // kInputDimensions isn't a multiple of 64. // Note that this means that for example for // kInputDimensions of 96 we fallback to AVX2 even though // the first 64 elements could be processed with AVX512. // This is caused by mixing the __m256 and __m512 variables // required to better handle that case and it would // require handling more cases statically not to lose performance. // This should be revisited if such input dimensions are to be considered. [[maybe_unused]] const auto input_vector512 = reinterpret_cast(input); [[maybe_unused]] const auto input_vector256 = reinterpret_cast(input); // kOutputDimensions is either 1 or a multiple of kSimdWidth // because then it is also an input dimension. if constexpr (kOutputDimensions % 16 == 0 && kNumChunks256 == 1) { for (IndexType i = 0; i < kOutputDimensions; i += 16) { const IndexType offset01a = (i + 0) * kPaddedInputDimensions; const IndexType offset23a = (i + 2) * kPaddedInputDimensions; const IndexType offset45a = (i + 4) * kPaddedInputDimensions; const IndexType offset67a = (i + 6) * kPaddedInputDimensions; const IndexType offset01b = (i + 8) * kPaddedInputDimensions; const IndexType offset23b = (i + 10) * kPaddedInputDimensions; const IndexType offset45b = (i + 12) * kPaddedInputDimensions; const IndexType offset67b = (i + 14) * kPaddedInputDimensions; const __m512i bias = *reinterpret_cast(&biases_[i]); __m512i* outptr = reinterpret_cast<__m512i*>(&output[i]); const auto row01a = *reinterpret_cast(&weights_[offset01a]); const auto row23a = *reinterpret_cast(&weights_[offset23a]); const auto row45a = *reinterpret_cast(&weights_[offset45a]); const auto row67a = *reinterpret_cast(&weights_[offset67a]); const auto row01b = *reinterpret_cast(&weights_[offset01b]); const auto row23b = *reinterpret_cast(&weights_[offset23b]); const auto row45b = *reinterpret_cast(&weights_[offset45b]); const auto row67b = *reinterpret_cast(&weights_[offset67b]); const __m256i in256 = input_vector256[0]; const __m512i in = _mm512_inserti64x4(_mm512_castsi256_si512(in256), in256, 1); #if defined (USE_VNNI) __m512i sum01a = _mm512_setzero_si512(); __m512i sum23a = _mm512_setzero_si512(); __m512i sum45a = _mm512_setzero_si512(); __m512i sum67a = _mm512_setzero_si512(); __m512i sum01b = _mm512_setzero_si512(); __m512i sum23b = _mm512_setzero_si512(); __m512i sum45b = _mm512_setzero_si512(); __m512i sum67b = _mm512_setzero_si512(); m512_add_dpbusd_epi32(sum01a, in, row01a); m512_add_dpbusd_epi32(sum23a, in, row23a); m512_add_dpbusd_epi32(sum45a, in, row45a); m512_add_dpbusd_epi32(sum67a, in, row67a); m512_add_dpbusd_epi32(sum01b, in, row01b); m512_add_dpbusd_epi32(sum23b, in, row23b); m512_add_dpbusd_epi32(sum45b, in, row45b); m512_add_dpbusd_epi32(sum67b, in, row67b); #else __m512i sum01a = m512_dpbusd_epi32(in, row01a); __m512i sum23a = m512_dpbusd_epi32(in, row23a); __m512i sum45a = m512_dpbusd_epi32(in, row45a); __m512i sum67a = m512_dpbusd_epi32(in, row67a); __m512i sum01b = m512_dpbusd_epi32(in, row01b); __m512i sum23b = m512_dpbusd_epi32(in, row23b); __m512i sum45b = m512_dpbusd_epi32(in, row45b); __m512i sum67b = m512_dpbusd_epi32(in, row67b); #endif *outptr = m512_hadd256x16( sum01a, sum23a, sum45a, sum67a, sum01b, sum23b, sum45b, sum67b, bias); } } else if constexpr (kOutputDimensions % 4 == 0) { for (IndexType i = 0; i < kOutputDimensions; i += 4) { const IndexType offset0 = (i + 0) * kPaddedInputDimensions; const IndexType offset1 = (i + 1) * kPaddedInputDimensions; const IndexType offset2 = (i + 2) * kPaddedInputDimensions; const IndexType offset3 = (i + 3) * kPaddedInputDimensions; const __m128i bias = *reinterpret_cast(&biases_[i]); __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]); if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0) { const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); #if defined (USE_VNNI) __m512i sum0 = _mm512_setzero_si512(); __m512i sum1 = _mm512_setzero_si512(); __m512i sum2 = _mm512_setzero_si512(); __m512i sum3 = _mm512_setzero_si512(); const IndexType kStart = 0; #else __m512i sum0 = m512_dpbusd_epi32(input_vector512[0], row0[0]); __m512i sum1 = m512_dpbusd_epi32(input_vector512[0], row1[0]); __m512i sum2 = m512_dpbusd_epi32(input_vector512[0], row2[0]); __m512i sum3 = m512_dpbusd_epi32(input_vector512[0], row3[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks512; ++j) { const __m512i in = input_vector512[j]; #if defined (USE_VNNI) m512_add_dpbusd_epi32(sum0, in, row0[j]); m512_add_dpbusd_epi32(sum1, in, row1[j]); m512_add_dpbusd_epi32(sum2, in, row2[j]); m512_add_dpbusd_epi32(sum3, in, row3[j]); #else sum0 = _mm512_add_epi32(sum0, m512_dpbusd_epi32(in, row0[j])); sum1 = _mm512_add_epi32(sum1, m512_dpbusd_epi32(in, row1[j])); sum2 = _mm512_add_epi32(sum2, m512_dpbusd_epi32(in, row2[j])); sum3 = _mm512_add_epi32(sum3, m512_dpbusd_epi32(in, row3[j])); #endif } *outptr = m512_haddx4(sum0, sum1, sum2, sum3, bias); } else { const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); #if defined (USE_VNNI) __m256i sum0 = _mm256_setzero_si256(); __m256i sum1 = _mm256_setzero_si256(); __m256i sum2 = _mm256_setzero_si256(); __m256i sum3 = _mm256_setzero_si256(); const IndexType kStart = 0; #else __m256i sum0 = m256_dpbusd_epi32(input_vector256[0], row0[0]); __m256i sum1 = m256_dpbusd_epi32(input_vector256[0], row1[0]); __m256i sum2 = m256_dpbusd_epi32(input_vector256[0], row2[0]); __m256i sum3 = m256_dpbusd_epi32(input_vector256[0], row3[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks256; ++j) { const __m256i in = input_vector256[j]; #if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); m256_add_dpbusd_epi32(sum1, in, row1[j]); m256_add_dpbusd_epi32(sum2, in, row2[j]); m256_add_dpbusd_epi32(sum3, in, row3[j]); #else sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); sum1 = _mm256_add_epi32(sum1, m256_dpbusd_epi32(in, row1[j])); sum2 = _mm256_add_epi32(sum2, m256_dpbusd_epi32(in, row2[j])); sum3 = _mm256_add_epi32(sum3, m256_dpbusd_epi32(in, row3[j])); #endif } *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias); } } } else if constexpr (kOutputDimensions == 1) { if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0) { const auto row0 = reinterpret_cast(&weights_[0]); #if defined (USE_VNNI) __m512i sum0 = _mm512_setzero_si512(); const IndexType kStart = 0; #else __m512i sum0 = m512_dpbusd_epi32(input_vector512[0], row0[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks512; ++j) { const __m512i in = input_vector512[j]; #if defined (USE_VNNI) m512_add_dpbusd_epi32(sum0, in, row0[j]); #else sum0 = _mm512_add_epi32(sum0, m512_dpbusd_epi32(in, row0[j])); #endif } output[0] = m512_hadd(sum0, biases_[0]); } else { const auto row0 = reinterpret_cast(&weights_[0]); #if defined (USE_VNNI) __m256i sum0 = _mm256_setzero_si256(); const IndexType kStart = 0; #else __m256i sum0 = m256_dpbusd_epi32(input_vector256[0], row0[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks256; ++j) { const __m256i in = input_vector256[j]; #if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); #else sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); #endif } output[0] = m256_hadd(sum0, biases_[0]); } } else { // This case can never happen because kOutputDimensions // is always 1 or a multiple of kSimdWidth. assert(false); } #elif defined (USE_AVX2) constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth; const auto output = reinterpret_cast(buffer); const auto input_vector = reinterpret_cast(input); // kOutputDimensions is either 1 or a multiple of kSimdWidth // because then it is also an input dimension. if constexpr (kOutputDimensions % 4 == 0) { for (IndexType i = 0; i < kOutputDimensions; i += 4) { const IndexType offset0 = (i + 0) * kPaddedInputDimensions; const IndexType offset1 = (i + 1) * kPaddedInputDimensions; const IndexType offset2 = (i + 2) * kPaddedInputDimensions; const IndexType offset3 = (i + 3) * kPaddedInputDimensions; const __m128i bias = *reinterpret_cast(&biases_[i]); __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]); const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); #if defined (USE_VNNI) __m256i sum0 = _mm256_setzero_si256(); __m256i sum1 = _mm256_setzero_si256(); __m256i sum2 = _mm256_setzero_si256(); __m256i sum3 = _mm256_setzero_si256(); const IndexType kStart = 0; #else __m256i sum0 = m256_dpbusd_epi32(input_vector[0], row0[0]); __m256i sum1 = m256_dpbusd_epi32(input_vector[0], row1[0]); __m256i sum2 = m256_dpbusd_epi32(input_vector[0], row2[0]); __m256i sum3 = m256_dpbusd_epi32(input_vector[0], row3[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks; ++j) { const __m256i in = input_vector[j]; #if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); m256_add_dpbusd_epi32(sum1, in, row1[j]); m256_add_dpbusd_epi32(sum2, in, row2[j]); m256_add_dpbusd_epi32(sum3, in, row3[j]); #else sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); sum1 = _mm256_add_epi32(sum1, m256_dpbusd_epi32(in, row1[j])); sum2 = _mm256_add_epi32(sum2, m256_dpbusd_epi32(in, row2[j])); sum3 = _mm256_add_epi32(sum3, m256_dpbusd_epi32(in, row3[j])); #endif } *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias); } } else if constexpr (kOutputDimensions == 1) { const auto row0 = reinterpret_cast(&weights_[0]); #if defined (USE_VNNI) __m256i sum0 = _mm256_setzero_si256(); const IndexType kStart = 0; #else __m256i sum0 = m256_dpbusd_epi32(input_vector[0], row0[0]); const IndexType kStart = 1; #endif for (IndexType j = kStart; j < kNumChunks; ++j) { const __m256i in = input_vector[j]; #if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); #else sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); #endif } output[0] = m256_hadd(sum0, biases_[0]); } else { // This case can never happen because kOutputDimensions // is always 1 or a multiple of kSimdWidth. assert(false); } #elif defined (USE_SSSE3) constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth; auto output = reinterpret_cast(buffer); const auto input_vector = reinterpret_cast(input); // kOutputDimensions is either 1 or a multiple of kSimdWidth // because then it is also an input dimension. if constexpr (kOutputDimensions % 4 == 0) { for (IndexType i = 0; i < kOutputDimensions; i += 4) { const IndexType offset0 = (i + 0) * kPaddedInputDimensions; const IndexType offset1 = (i + 1) * kPaddedInputDimensions; const IndexType offset2 = (i + 2) * kPaddedInputDimensions; const IndexType offset3 = (i + 3) * kPaddedInputDimensions; const __m128i bias = *reinterpret_cast(&biases_[i]); __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]); const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); __m128i sum0 = m128_dpbusd_epi32(input_vector[0], row0[0]); __m128i sum1 = m128_dpbusd_epi32(input_vector[0], row1[0]); __m128i sum2 = m128_dpbusd_epi32(input_vector[0], row2[0]); __m128i sum3 = m128_dpbusd_epi32(input_vector[0], row3[0]); for (int j = 1; j < (int)kNumChunks; ++j) { const __m128i in = input_vector[j]; sum0 = _mm_add_epi32(sum0, m128_dpbusd_epi32(in, row0[j])); sum1 = _mm_add_epi32(sum1, m128_dpbusd_epi32(in, row1[j])); sum2 = _mm_add_epi32(sum2, m128_dpbusd_epi32(in, row2[j])); sum3 = _mm_add_epi32(sum3, m128_dpbusd_epi32(in, row3[j])); } *outptr = m128_haddx4(sum0, sum1, sum2, sum3, bias); } } else if constexpr (kOutputDimensions == 1) { const auto row0 = reinterpret_cast(&weights_[0]); __m128i sum0 = m128_dpbusd_epi32(input_vector[0], row0[0]); for (int j = 1; j < (int)kNumChunks; ++j) sum0 = _mm_add_epi32(sum0, m128_dpbusd_epi32(input_vector[j], row0[j])); output[0] = m128_hadd(sum0, biases_[0]); } else { // This case can never happen because kOutputDimensions // is always 1 or a multiple of kSimdWidth. assert(false); } #else // Use old implementation for the other architectures. auto output = reinterpret_cast(buffer); #if defined(USE_SSE2) constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth; #ifndef USE_SSSE3 const __m128i kZeros = _mm_setzero_si128(); #else const __m128i kOnes = _mm_set1_epi16(1); #endif const auto input_vector = reinterpret_cast(input); #elif defined(USE_MMX) constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth; const __m64 kZeros = _mm_setzero_si64(); const auto input_vector = reinterpret_cast(input); #elif defined(USE_NEON) constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth; const auto input_vector = reinterpret_cast(input); #endif for (IndexType i = 0; i < kOutputDimensions; ++i) { const IndexType offset = i * kPaddedInputDimensions; #if defined(USE_SSE2) __m128i sum_lo = _mm_cvtsi32_si128(biases_[i]); __m128i sum_hi = kZeros; const auto row = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m128i row_j = _mm_load_si128(&row[j]); __m128i input_j = _mm_load_si128(&input_vector[j]); __m128i row_signs = _mm_cmpgt_epi8(kZeros, row_j); __m128i extended_row_lo = _mm_unpacklo_epi8(row_j, row_signs); __m128i extended_row_hi = _mm_unpackhi_epi8(row_j, row_signs); __m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros); __m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros); __m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo); __m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi); sum_lo = _mm_add_epi32(sum_lo, product_lo); sum_hi = _mm_add_epi32(sum_hi, product_hi); } __m128i sum = _mm_add_epi32(sum_lo, sum_hi); __m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sum_high_64); __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2)); sum = _mm_add_epi32(sum, sum_second_32); output[i] = _mm_cvtsi128_si32(sum); #elif defined(USE_MMX) __m64 sum_lo = _mm_cvtsi32_si64(biases_[i]); __m64 sum_hi = kZeros; const auto row = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m64 row_j = row[j]; __m64 input_j = input_vector[j]; __m64 row_signs = _mm_cmpgt_pi8(kZeros, row_j); __m64 extended_row_lo = _mm_unpacklo_pi8(row_j, row_signs); __m64 extended_row_hi = _mm_unpackhi_pi8(row_j, row_signs); __m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros); __m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros); __m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo); __m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi); sum_lo = _mm_add_pi32(sum_lo, product_lo); sum_hi = _mm_add_pi32(sum_hi, product_hi); } __m64 sum = _mm_add_pi32(sum_lo, sum_hi); sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum)); output[i] = _mm_cvtsi64_si32(sum); #elif defined(USE_NEON) int32x4_t sum = {biases_[i]}; const auto row = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]); product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]); sum = vpadalq_s16(sum, product); } output[i] = sum[0] + sum[1] + sum[2] + sum[3]; #else OutputType sum = biases_[i]; for (IndexType j = 0; j < kInputDimensions; ++j) { sum += weights_[offset + j] * input[j]; } output[i] = sum; #endif } #if defined(USE_MMX) _mm_empty(); #endif #endif return output; } private: using BiasType = OutputType; using WeightType = std::int8_t; // Make the learning class a friend friend class Trainer; PreviousLayer previous_layer_; alignas(kCacheLineSize) BiasType biases_[kOutputDimensions]; alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions]; }; } // namespace Eval::NNUE::Layers #endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED