This patch moves the DotProd code into the propagation function which
has sequential access optimization. To prove the speedup, the comparison
is done without the sparse layer. With the sparse layer the effect is
marginal (GCC 0.3%, LLVM/Clang 0.1%).
For both tests, binary is compiled with GCC 14.1. Each test had 50 runs.
Sparse layer included:
```
speedup = +0.0030
P(speedup > 0) = 1.0000
```
Sparse layer excluded:
```
speedup = +0.0561
P(speedup > 0) = 1.0000
```
closes https://github.com/official-stockfish/Stockfish/pull/5520
No functional change
Removes some max calls
Some speedup stats, courtesy of @AndyGrant (albeit measured in an alternate implementation)
Dev 749240 nps
Base 748495 nps
Gain 0.100%
289936 games
STC:
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 203040 W: 52213 L: 52179 D: 98648
Ptnml(0-2): 480, 20722, 59139, 20642, 537
https://tests.stockfishchess.org/tests/view/664805fe6dcff0d1d6b05f2ccloses#5261
No functional change
This introduces clang-format to enforce a consistent code style for Stockfish.
Having a documented and consistent style across the code will make contributing easier
for new developers, and will make larger changes to the codebase easier to make.
To facilitate formatting, this PR includes a Makefile target (`make format`) to format the code,
this requires clang-format (version 17 currently) to be installed locally.
Installing clang-format is straightforward on most OS and distros
(e.g. with https://apt.llvm.org/, brew install clang-format, etc), as this is part of quite commonly
used suite of tools and compilers (llvm / clang).
Additionally, a CI action is present that will verify if the code requires formatting,
and comment on the PR as needed. Initially, correct formatting is not required, it will be
done by maintainers as part of the merge or in later commits, but obviously this is encouraged.
fixes https://github.com/official-stockfish/Stockfish/issues/3608
closes https://github.com/official-stockfish/Stockfish/pull/4790
Co-Authored-By: Joost VandeVondele <Joost.VandeVondele@gmail.com>
deal with the general case
About a 8.6% speedup (for general arch)
Results for 200 tests for each version:
Base Test Diff
Mean 141741 153998 -12257
StDev 2990 3042 3742
p-value: 0.999
speedup: 0.086
closes https://github.com/official-stockfish/Stockfish/pull/4786
No functional change
Add more static checks regarding the SIMD width match.
STC: https://tests.stockfishchess.org/tests/view/64f5c568a9bc5a78c669e70e
LLR: 2.95 (-2.94,2.94) <-1.75,0.25>
Total: 125216 W: 31756 L: 31636 D: 61824
Ptnml(0-2): 327, 13993, 33848, 14113, 327
Fixes a bug introduced in 2f2f45f, where with AVX-512 the weights and input to
the last layer were being read out of bounds. Now AVX-512 is only used for the
layers it can be used for. Additional static assertions have been added to
prevent more errors like this in the future.
closes https://github.com/official-stockfish/Stockfish/pull/4773
No functional change
Squared numbers are never negative, so barring any wraparound there
is no need to clamp to 0. From reading the code, there's no obvious
way to get wraparound, so the entire operation can be simplified
away. Updated original truncated code comments to be sensible.
Verified by running ./stockfish bench 128 1 24 and by the following test:
STC: https://tests.stockfishchess.org/tests/view/64da4db95b17f7c21c0eabe7
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 60224 W: 15425 L: 15236 D: 29563
Ptnml(0-2): 195, 6576, 16382, 6763, 196
closes https://github.com/official-stockfish/Stockfish/pull/4751
No functional change
Current master fails to compile for ARMv8 on Raspi cause gcc (version 10.2.1)
does not like to cast between signed and unsigned vector types. This patch
fixes it by using unsigned vector pointer for ARM to avoid implicite cast.
closes https://github.com/official-stockfish/Stockfish/pull/4752
No functional change
a) Add further tests to CI to cover most features. This uncovered a potential race
in case setoption was sent between two searches. As the UCI protocol requires
this sent to be went the engine is not searching, setoption now ensures that
this is the case.
b) Remove some unused code
closes https://github.com/official-stockfish/Stockfish/pull/4730
No functional change
Also make two get_weight_index() static methods constexpr, for
consistency with the other static get_hash_value() method right above.
Tested for speed by user Torom (thanks).
closes https://github.com/official-stockfish/Stockfish/pull/4708
No functional change
Use block sparse input for the first fully connected layer on architectures with at least SSSE3.
Depending on the CPU architecture, this yields a speedup of up to 10%, e.g.
```
Result of 100 runs of 'bench 16 1 13 default depth NNUE'
base (...ockfish-base) = 959345 +/- 7477
test (...ckfish-patch) = 1054340 +/- 9640
diff = +94995 +/- 3999
speedup = +0.0990
P(speedup > 0) = 1.0000
CPU: 8 x AMD Ryzen 7 5700U with Radeon Graphics
Hyperthreading: on
```
Passed STC:
https://tests.stockfishchess.org/tests/view/6485aa0965ffe077ca12409c
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 8864 W: 2479 L: 2223 D: 4162
Ptnml(0-2): 13, 829, 2504, 1061, 25
This commit includes a net with reordered weights, to increase the likelihood of block sparse inputs,
but otherwise equivalent to the previous master net (nn-ea57bea57e32.nnue).
Activation data collected with https://github.com/AndrovT/Stockfish/tree/log-activations, running bench 16 1 13 varied_1000.epd depth NNUE on this data. Net parameters permuted with https://gist.github.com/AndrovT/9e3fbaebb7082734dc84d27e02094cb3.
closes https://github.com/official-stockfish/Stockfish/pull/4612
No functional change
The sdot instruction computes (and accumulates) a signed dot product,
which is quite handy for Stockfish's NNUE code. The instruction is
optional for Armv8.2 and Armv8.3, and mandatory for Armv8.4 and above.
The commit adds a new 'arm-dotprod' architecture with enabled dot
product support. It also enables dot product support for the existing
'apple-silicon' architecture, which is at least Armv8.5.
The following local speed test was performed on an Apple M1 with
ARCH=apple-silicon. I had to remove CPU pinning from the benchmark
script. However, the results were still consistent: Checking both
binaries against themselves reported a speedup of +0.0000 and +0.0005,
respectively.
```
Result of 100 runs
==================
base (...ish.037ef3e1) = 1917997 +/- 7152
test (...fish.dotprod) = 2159682 +/- 9066
diff = +241684 +/- 2923
speedup = +0.1260
P(speedup > 0) = 1.0000
CPU: 10 x arm
Hyperthreading: off
```
Fixes#4193
closes https://github.com/official-stockfish/Stockfish/pull/4400
No functional change
The accumulator should be an earlyclobber because it is written before
all input operands are read. Otherwise, the asm code computes a wrong
result if the accumulator shares a register with one of the other input
operands (which happens if we pass in the same expression for the
accumulator and the operand).
Closes https://github.com/official-stockfish/Stockfish/pull/4339
No functional change
Architecture:
The diagram of the "SFNNv4" architecture:
https://user-images.githubusercontent.com/8037982/153455685-cbe3a038-e158-4481-844d-9d5fccf5c33a.png
The most important architectural changes are the following:
* 1024x2 [activated] neurons are pairwise, elementwise multiplied (not quite pairwise due to implementation details, see diagram), which introduces a non-linearity that exhibits similar benefits to previously tested sigmoid activation (quantmoid4), while being slightly faster.
* The following layer has therefore 2x less inputs, which we compensate by having 2 more outputs. It is possible that reducing the number of outputs might be beneficial (as we had it as low as 8 before). The layer is now 1024->16.
* The 16 outputs are split into 15 and 1. The 1-wide output is added to the network output (after some necessary scaling due to quantization differences). The 15-wide is activated and follows the usual path through a set of linear layers. The additional 1-wide output is at least neutral, but has shown a slightly positive trend in training compared to networks without it (all 16 outputs through the usual path), and allows possibly an additional stage of lazy evaluation to be introduced in the future.
Additionally, the inference code was rewritten and no longer uses a recursive implementation. This was necessitated by the splitting of the 16-wide intermediate result into two, which was impossible to do with the old implementation with ugly hacks. This is hopefully overall for the better.
First session:
The first session was training a network from scratch (random initialization). The exact trainer used was slightly different (older) from the one used in the second session, but it should not have a measurable effect. The purpose of this session is to establish a strong network base for the second session. Small deviations in strength do not harm the learnability in the second session.
The training was done using the following command:
python3 train.py \
/home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
/home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
--gpus "$3," \
--threads 4 \
--num-workers 4 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=1.0 \
--gamma=0.992 \
--lr=8.75e-4 \
--max_epochs=400 \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
Every 20th net was saved and its playing strength measured against some baseline at 25k nodes per move with pure NNUE evaluation (modified binary). The exact setup is not important as long as it's consistent. The purpose is to sift good candidates from bad ones.
The dataset can be found https://drive.google.com/file/d/1UQdZN_LWQ265spwTBwDKo0t1WjSJKvWY/view
Second session:
The second training session was done starting from the best network (as determined by strength testing) from the first session. It is important that it's resumed from a .pt model and NOT a .ckpt model. The conversion can be performed directly using serialize.py
The LR schedule was modified to use gamma=0.995 instead of gamma=0.992 and LR=4.375e-4 instead of LR=8.75e-4 to flatten the LR curve and allow for longer training. The training was then running for 800 epochs instead of 400 (though it's possibly mostly noise after around epoch 600).
The training was done using the following command:
The training was done using the following command:
python3 train.py \
/data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
/data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
--gpus "$3," \
--threads 4 \
--num-workers 4 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=1.0 \
--gamma=0.995 \
--lr=4.375e-4 \
--max_epochs=800 \
--resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp295/nn-epoch399.pt \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$run_id
In particular note that we now use lambda=1.0 instead of lambda=0.8 (previous nets), because tests show that WDL-skipping introduced by vondele performs better with lambda=1.0. Nets were being saved every 20th epoch. In total 16 runs were made with these settings and the best nets chosen according to playing strength at 25k nodes per move with pure NNUE evaluation - these are the 4 nets that have been put on fishtest.
The dataset can be found either at ftp://ftp.chessdb.cn/pub/sopel/data_sf/T60T70wIsRightFarseerT60T74T75T76.binpack in its entirety (download might be painfully slow because hosted in China) or can be assembled in the following way:
Get the 5640ad48ae/script/interleave_binpacks.py script.
Download T60T70wIsRightFarseer.binpack https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view
Download farseerT74.binpack http://trainingdata.farseer.org/T74-May13-End.7z
Download farseerT75.binpack http://trainingdata.farseer.org/T75-June3rd-End.7z
Download farseerT76.binpack http://trainingdata.farseer.org/T76-Nov10th-End.7z
Run python3 interleave_binpacks.py T60T70wIsRightFarseer.binpack farseerT74.binpack farseerT75.binpack farseerT76.binpack T60T70wIsRightFarseerT60T74T75T76.binpack
Tests:
STC: https://tests.stockfishchess.org/tests/view/6203fb85d71106ed12a407b7
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 16952 W: 4775 L: 4521 D: 7656
Ptnml(0-2): 133, 1818, 4318, 2076, 131
LTC: https://tests.stockfishchess.org/tests/view/62041e68d71106ed12a40e85
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 14944 W: 4138 L: 3907 D: 6899
Ptnml(0-2): 21, 1499, 4202, 1728, 22
closes https://github.com/official-stockfish/Stockfish/pull/3927
Bench: 4919707
This patch optimizes the NEON implementation in two ways.
The activation layer after the feature transformer is rewritten to make it easier for the compiler to see through dependencies and unroll. This in itself is a minimal, but a positive improvement. Other architectures could benefit from this too in the future. This is not an algorithmic change.
The affine transform for large matrices (first layer after FT) on NEON now utilizes the same optimized code path as >=SSSE3, which makes the memory accesses more sequential and makes better use of the available registers, which allows for code that has longer dependency chains.
Benchmarks from Redshift#161, profile-build with apple clang
george@Georges-MacBook-Air nets % ./stockfish-b82d93 bench 2>&1 | tail -4 (current master)
===========================
Total time (ms) : 2167
Nodes searched : 4667742
Nodes/second : 2154011
george@Georges-MacBook-Air nets % ./stockfish-7377b8 bench 2>&1 | tail -4 (this patch)
===========================
Total time (ms) : 1842
Nodes searched : 4667742
Nodes/second : 2534061
This is a solid 18% improvement overall, larger in a bench with NNUE-only, not mixed.
Improvement is also observed on armv7-neon (Raspberry Pi, and older phones), around 5% speedup.
No changes for architectures other than NEON.
closes https://github.com/official-stockfish/Stockfish/pull/3837
No functional changes.
The new network caused some issues initially due to the very narrow neuron set between the first two FC layers. Necessary changes were hacked together to make it work. This patch is a mature approach to make the affine transform code faster, more readable, and easier to maintain should the layer sizes change again.
The following changes were made:
* ClippedReLU always produces a multiple of 32 outputs. This is about as good of a solution for AffineTransform's SIMD requirements as it can get without a bigger rewrite.
* All self-contained simd helpers are moved to a separate file (simd.h). Inline asm is utilized to work around GCC's issues with code generation and register assignment. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101693, https://godbolt.org/z/da76fY1n7
* AffineTransform has 2 specializations. While it's more lines of code due to the boilerplate, the logic in both is significantly reduced, as these two are impossible to nicely combine into one.
1) The first specialization is for cases when there's >=128 inputs. It uses a different approach to perform the affine transform and can make full use of AVX512 without any edge cases. Furthermore, it has higher theoretical throughput because less loads are needed in the hot path, requiring only a fixed amount of instructions for horizontal additions at the end, which are amortized by the large number of inputs.
2) The second specialization is made to handle smaller layers where performance is still necessary but edge cases need to be handled. AVX512 implementation for this was ommited by mistake, a remnant from the temporary implementation for the new... This could be easily reintroduced if needed. A slightly more detailed description of both implementations is in the code.
Overall it should be a minor speedup, as shown on fishtest:
passed STC:
LLR: 2.96 (-2.94,2.94) <-0.50,2.50>
Total: 51520 W: 4074 L: 3888 D: 43558
Ptnml(0-2): 111, 3136, 19097, 3288, 128
and various tests shown in the pull request
closes https://github.com/official-stockfish/Stockfish/pull/3663
No functional change
Introduces a new NNUE network architecture and associated network parameters
The summary of the changes:
* Position for each perspective mirrored such that the king is on e..h files. Cuts the feature transformer size in half, while preserving enough knowledge to be good. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.b40q4rb1w7on.
* The number of neurons after the feature transformer increased two-fold, to 1024x2. This is possibly mostly due to the now very optimized feature transformer update code.
* The number of neurons after the second layer is reduced from 16 to 8, to reduce the speed impact. This, perhaps surprisingly, doesn't harm the strength much. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.6qkocr97fezq
The AffineTransform code did not work out-of-the box with the smaller number of neurons after the second layer, so some temporary changes have been made to add a special case for InputDimensions == 8. Also additional 0 padding is added to the output for some archs that cannot process inputs by <=8 (SSE2, NEON). VNNI uses an implementation that can keep all outputs in the registers while reducing the number of loads by 3 for each 16 inputs, thanks to the reduced number of output neurons. However GCC is particularily bad at optimization here (and perhaps why the current way the affine transform is done even passed sprt) (see https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit# for details) and more work will be done on this in the following days. I expect the current VNNI implementation to be improved and extended to other architectures.
The network was trained with a slightly modified version of the pytorch trainer (https://github.com/glinscott/nnue-pytorch); the changes are in https://github.com/glinscott/nnue-pytorch/pull/143
The training utilized 2 datasets.
dataset A - https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing
dataset B - as described in ba01f4b954
The training process was as following:
train on dataset A for 350 epochs, take the best net in terms of elo at 20k nodes per move (it's fine to take anything from later stages of training).
convert the .ckpt to .pt
--resume-from-model from the .pt file, train on dataset B for <600 epochs, take the best net. Lambda=0.8, applied before the loss function.
The first training command:
python3 train.py \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=1.0 \
--max_epochs=600 \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
The second training command:
python3 serialize.py \
--features=HalfKAv2_hm^ \
../nnue-pytorch-training/experiment_131/run_6/default/version_0/checkpoints/epoch-499.ckpt \
../nnue-pytorch-training/experiment_$1/base/base.pt
python3 train.py \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
../nnue-pytorch-training/data/michael_commit_b94a65.binpack \
--gpus "$3," \
--threads 1 \
--num-workers 1 \
--batch-size 16384 \
--progress_bar_refresh_rate 20 \
--smart-fen-skipping \
--random-fen-skipping 3 \
--features=HalfKAv2_hm^ \
--lambda=0.8 \
--max_epochs=600 \
--resume-from-model ../nnue-pytorch-training/experiment_$1/base/base.pt \
--default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
STC: https://tests.stockfishchess.org/tests/view/611120b32a8a49ac5be798c4
LLR: 2.97 (-2.94,2.94) <-0.50,2.50>
Total: 22480 W: 2434 L: 2251 D: 17795
Ptnml(0-2): 101, 1736, 7410, 1865, 128
LTC: https://tests.stockfishchess.org/tests/view/611152b32a8a49ac5be798ea
LLR: 2.93 (-2.94,2.94) <0.50,3.50>
Total: 9776 W: 442 L: 333 D: 9001
Ptnml(0-2): 5, 295, 4180, 402, 6
closes https://github.com/official-stockfish/Stockfish/pull/3646
bench: 5189338
This patch improves the codegen in the AffineTransform::forward function for architectures >=SSSE3. Current code works directly on memory and the compiler cannot see that the stores through outptr do not alias the loads through weights and input32. The solution implemented is to perform the affine transform with local variables as accumulators and only store the result to memory at the end. The number of accumulators required is OutputDimensions / OutputSimdWidth, which means that for the 1024->16 affine transform it requires 4 registers with SSSE3, 2 with AVX2, 1 with AVX512. It also cuts the number of stores required by NumRegs * 256 for each node evaluated. The local accumulators are expected to be assigned to registers, but even if this cannot be done in some case due to register pressure it will help the compiler to see that there is no aliasing between the loads and stores and may still result in better codegen.
See https://godbolt.org/z/59aTKbbYc for codegen comparison.
passed STC:
LLR: 2.94 (-2.94,2.94) <-0.50,2.50>
Total: 140328 W: 10635 L: 10358 D: 119335
Ptnml(0-2): 302, 8339, 52636, 8554, 333
closes https://github.com/official-stockfish/Stockfish/pull/3634
No functional change
- Comment for Countemove pruning -> Continuation history
- Fix comment in input_slice.h
- Shorter lines in Makefile
- Comment for scale factor
- Fix comment for pinners in see_ge()
- Change Thread.id() signature to size_t
- Trailing space in reprosearch.sh
- Add Douglas Matos Gomes to the AUTHORS file
- Introduce comment for undo_null_move()
- Use Stockfish coding style for export_net()
- Change date in AUTHORS file
closes https://github.com/official-stockfish/Stockfish/pull/3416
No functional change
This PR adds an ability to export any currently loaded network.
The export_net command now takes an optional filename parameter.
If the loaded net is not the embedded net the filename parameter is required.
Two changes were required to support this:
* the "architecture" string, which is really just a some kind of description in the net, is now saved into netDescription on load and correctly saved on export.
* the AffineTransform scrambles weights for some architectures and sparsifies them, such that retrieving the index is hard. This is solved by having a temporary scrambled<->unscrambled index lookup table when loading the network, and the actual index is saved for each individual weight that makes it to canSaturate16. This increases the size of the canSaturate16 entries by 6 bytes.
closes https://github.com/official-stockfish/Stockfish/pull/3456
No functional change