Unify naming convention of the NNUE code

matches the rest of the stockfish code base

closes https://github.com/official-stockfish/Stockfish/pull/3437

No functional change
This commit is contained in:
Tomasz Sobczyk
2021-04-19 19:50:19 +02:00
committed by Joost VandeVondele
parent a7ab92ec25
commit fbbd4adc3c
17 changed files with 364 additions and 370 deletions

View File

@@ -27,7 +27,7 @@
namespace Stockfish::Eval::NNUE::Layers {
// Affine transformation layer
template <typename PreviousLayer, IndexType OutputDimensions>
template <typename PreviousLayer, IndexType OutDims>
class AffineTransform {
public:
// Input/output type
@@ -36,64 +36,64 @@ namespace Stockfish::Eval::NNUE::Layers {
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType kPaddedInputDimensions =
CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
#if defined (USE_AVX512)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 2;
static constexpr const IndexType OutputSimdWidth = SimdWidth / 2;
#elif defined (USE_SSSE3)
static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 4;
static constexpr const IndexType OutputSimdWidth = SimdWidth / 4;
#endif
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xCC03DAE4u;
hash_value += kOutputDimensions;
hash_value ^= PreviousLayer::GetHashValue() >> 1;
hash_value ^= PreviousLayer::GetHashValue() << 31;
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= PreviousLayer::get_hash_value() >> 1;
hashValue ^= PreviousLayer::get_hash_value() << 31;
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
if (!previous_layer_.ReadParameters(stream)) return false;
for (std::size_t i = 0; i < kOutputDimensions; ++i)
biases_[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
// Read network parameters
bool read_parameters(std::istream& stream) {
if (!previousLayer.read_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
#if !defined (USE_SSSE3)
weights_[i] = read_little_endian<WeightType>(stream);
weights[i] = read_little_endian<WeightType>(stream);
#else
weights_[
(i / 4) % (kPaddedInputDimensions / 4) * kOutputDimensions * 4 +
i / kPaddedInputDimensions * 4 +
weights[
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4
] = read_little_endian<WeightType>(stream);
// Determine if eights of weight and input products can be summed using 16bits
// without saturation. We assume worst case combinations of 0 and 127 for all inputs.
if (kOutputDimensions > 1 && !stream.fail())
if (OutputDimensions > 1 && !stream.fail())
{
canSaturate16.count = 0;
#if !defined(USE_VNNI)
for (IndexType i = 0; i < kPaddedInputDimensions; i += 16)
for (IndexType j = 0; j < kOutputDimensions; ++j)
for (IndexType i = 0; i < PaddedInputDimensions; i += 16)
for (IndexType j = 0; j < OutputDimensions; ++j)
for (int x = 0; x < 2; ++x)
{
WeightType* w = &weights_[i * kOutputDimensions + j * 4 + x * 2];
WeightType* w = &weights[i * OutputDimensions + j * 4 + x * 2];
int sum[2] = {0, 0};
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
sum[w[idx] < 0] += w[idx];
}
for (int sign : { -1, 1 })
@@ -102,12 +102,12 @@ namespace Stockfish::Eval::NNUE::Layers {
int maxK = 0, maxW = 0;
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
if (maxW < sign * w[idx])
maxK = k, maxW = sign * w[idx];
}
IndexType idx = maxK / 2 * kOutputDimensions * 4 + maxK % 2;
IndexType idx = maxK / 2 * OutputDimensions * 4 + maxK % 2;
sum[sign == -1] -= w[idx];
canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
w[idx] = 0;
@@ -126,14 +126,14 @@ namespace Stockfish::Eval::NNUE::Layers {
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
#if defined (USE_AVX512)
[[maybe_unused]] const __m512i kOnes512 = _mm512_set1_epi16(1);
[[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1);
[[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int {
return _mm512_reduce_add_epi32(sum) + bias;
@@ -144,7 +144,7 @@ namespace Stockfish::Eval::NNUE::Layers {
acc = _mm512_dpbusd_epi32(acc, a, b);
#else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, kOnes512);
product0 = _mm512_madd_epi16(product0, Ones512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
@@ -164,7 +164,7 @@ namespace Stockfish::Eval::NNUE::Layers {
product0 = _mm512_add_epi16(product0, product1);
product2 = _mm512_add_epi16(product2, product3);
product0 = _mm512_add_epi16(product0, product2);
product0 = _mm512_madd_epi16(product0, kOnes512);
product0 = _mm512_madd_epi16(product0, Ones512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
@@ -172,7 +172,7 @@ namespace Stockfish::Eval::NNUE::Layers {
#endif
#if defined (USE_AVX2)
[[maybe_unused]] const __m256i kOnes256 = _mm256_set1_epi16(1);
[[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1);
[[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
@@ -186,7 +186,7 @@ namespace Stockfish::Eval::NNUE::Layers {
acc = _mm256_dpbusd_epi32(acc, a, b);
#else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, kOnes256);
product0 = _mm256_madd_epi16(product0, Ones256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
@@ -206,7 +206,7 @@ namespace Stockfish::Eval::NNUE::Layers {
product0 = _mm256_add_epi16(product0, product1);
product2 = _mm256_add_epi16(product2, product3);
product0 = _mm256_add_epi16(product0, product2);
product0 = _mm256_madd_epi16(product0, kOnes256);
product0 = _mm256_madd_epi16(product0, Ones256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
@@ -214,7 +214,7 @@ namespace Stockfish::Eval::NNUE::Layers {
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1);
[[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1);
[[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
@@ -224,7 +224,7 @@ namespace Stockfish::Eval::NNUE::Layers {
[[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, kOnes128);
product0 = _mm_madd_epi16(product0, Ones128);
acc = _mm_add_epi32(acc, product0);
};
@@ -237,7 +237,7 @@ namespace Stockfish::Eval::NNUE::Layers {
product0 = _mm_add_epi16(product0, product1);
product2 = _mm_add_epi16(product2, product3);
product0 = _mm_add_epi16(product0, product2);
product0 = _mm_madd_epi16(product0, kOnes128);
product0 = _mm_madd_epi16(product0, Ones128);
acc = _mm_add_epi32(acc, product0);
};
@@ -269,71 +269,71 @@ namespace Stockfish::Eval::NNUE::Layers {
#if defined (USE_SSSE3)
const auto output = reinterpret_cast<OutputType*>(buffer);
const auto input_vector = reinterpret_cast<const vec_t*>(input);
const auto inputVector = reinterpret_cast<const vec_t*>(input);
static_assert(kOutputDimensions % kOutputSimdWidth == 0 || kOutputDimensions == 1);
static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);
// kOutputDimensions is either 1 or a multiple of kSimdWidth
// OutputDimensions is either 1 or a multiple of SimdWidth
// because then it is also an input dimension.
if constexpr (kOutputDimensions % kOutputSimdWidth == 0)
if constexpr (OutputDimensions % OutputSimdWidth == 0)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / 4;
constexpr IndexType NumChunks = PaddedInputDimensions / 4;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
vec_t* outptr = reinterpret_cast<vec_t*>(output);
std::memcpy(output, biases_, kOutputDimensions * sizeof(OutputType));
std::memcpy(output, biases, OutputDimensions * sizeof(OutputType));
for (int i = 0; i < (int)kNumChunks - 3; i += 4)
for (int i = 0; i < (int)NumChunks - 3; i += 4)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const vec_t in2 = vec_set_32(input32[i + 2]);
const vec_t in3 = vec_set_32(input32[i + 3]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights_[(i + 0) * kOutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights_[(i + 1) * kOutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights_[(i + 2) * kOutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights_[(i + 3) * kOutputDimensions * 4]);
for (int j = 0; j * kOutputSimdWidth < kOutputDimensions; ++j)
const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights[(i + 2) * OutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights[(i + 3) * OutputDimensions * 4]);
for (int j = 0; j * OutputSimdWidth < OutputDimensions; ++j)
vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
}
for (int i = 0; i < canSaturate16.count; ++i)
output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
}
else if constexpr (kOutputDimensions == 1)
else if constexpr (OutputDimensions == 1)
{
#if defined (USE_AVX512)
if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) != 0)
if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0)
{
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const auto inputVector256 = reinterpret_cast<const __m256i*>(input);
__m256i sum0 = _mm256_setzero_si256();
const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
const auto row0 = reinterpret_cast<const __m256i*>(&weights[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
for (int j = 0; j < (int)NumChunks; ++j)
{
const __m256i in = input_vector256[j];
const __m256i in = inputVector256[j];
m256_add_dpbusd_epi32(sum0, in, row0[j]);
}
output[0] = m256_hadd(sum0, biases_[0]);
output[0] = m256_hadd(sum0, biases[0]);
}
else
#endif
{
#if defined (USE_AVX512)
constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2);
#else
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
#endif
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights_[0]);
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < (int)kNumChunks; ++j)
for (int j = 0; j < (int)NumChunks; ++j)
{
const vec_t in = input_vector[j];
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases_[0]);
output[0] = vec_hadd(sum0, biases[0]);
}
}
@@ -344,80 +344,80 @@ namespace Stockfish::Eval::NNUE::Layers {
auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_SSE2)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m128i kZeros = _mm_setzero_si128();
const auto input_vector = reinterpret_cast<const __m128i*>(input);
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const __m64 kZeros = _mm_setzero_si64();
const auto input_vector = reinterpret_cast<const __m64*>(input);
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const __m64 Zeros = _mm_setzero_si64();
const auto inputVector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
#endif
for (IndexType i = 0; i < kOutputDimensions; ++i) {
const IndexType offset = i * kPaddedInputDimensions;
for (IndexType i = 0; i < OutputDimensions; ++i) {
const IndexType offset = i * PaddedInputDimensions;
#if defined(USE_SSE2)
__m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
__m128i sum_hi = kZeros;
const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&input_vector[j]);
__m128i extended_row_lo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extended_row_hi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
__m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
__m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
__m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_epi32(sum_lo, product_lo);
sum_hi = _mm_add_epi32(sum_hi, product_hi);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sum_lo, sum_hi);
__m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_high_64);
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_MMX)
__m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
__m64 sum_hi = kZeros;
const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
__m64 sumLo = _mm_cvtsi32_si64(biases[i]);
__m64 sumHi = Zeros;
const auto row = reinterpret_cast<const __m64*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = input_vector[j];
__m64 extended_row_lo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extended_row_hi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
__m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
__m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
__m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
sum_lo = _mm_add_pi32(sum_lo, product_lo);
sum_hi = _mm_add_pi32(sum_hi, product_hi);
__m64 input_j = inputVector[j];
__m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros);
__m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros);
__m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo);
__m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_pi32(sumLo, productLo);
sumHi = _mm_add_pi32(sumHi, productHi);
}
__m64 sum = _mm_add_pi32(sum_lo, sum_hi);
__m64 sum = _mm_add_pi32(sumLo, sumHi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases_[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
for (IndexType j = 0; j < kNumChunks; ++j) {
int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#else
OutputType sum = biases_[i];
for (IndexType j = 0; j < kInputDimensions; ++j) {
sum += weights_[offset + j] * input[j];
OutputType sum = biases[i];
for (IndexType j = 0; j < InputDimensions; ++j) {
sum += weights[offset + j] * input[j];
}
output[i] = sum;
#endif
@@ -436,10 +436,10 @@ namespace Stockfish::Eval::NNUE::Layers {
using BiasType = OutputType;
using WeightType = std::int8_t;
PreviousLayer previous_layer_;
PreviousLayer previousLayer;
alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
#if defined (USE_SSSE3)
struct CanSaturate {
int count;
@@ -447,7 +447,7 @@ namespace Stockfish::Eval::NNUE::Layers {
uint16_t out;
uint16_t in;
int8_t w;
} ids[kPaddedInputDimensions * kOutputDimensions * 3 / 4];
} ids[PaddedInputDimensions * OutputDimensions * 3 / 4];
void add(int i, int j, int8_t w) {
ids[count].out = i;

View File

@@ -35,130 +35,130 @@ namespace Stockfish::Eval::NNUE::Layers {
static_assert(std::is_same<InputType, std::int32_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType kInputDimensions =
PreviousLayer::kOutputDimensions;
static constexpr IndexType kOutputDimensions = kInputDimensions;
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = InputDimensions;
// Size of forward propagation buffer used in this layer
static constexpr std::size_t kSelfBufferSize =
CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize =
PreviousLayer::kBufferSize + kSelfBufferSize;
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0x538D24C7u;
hash_value += PreviousLayer::GetHashValue();
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += PreviousLayer::get_hash_value();
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& stream) {
return previous_layer_.ReadParameters(stream);
bool read_parameters(std::istream& stream) {
return previousLayer.read_parameters(stream);
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features, char* buffer) const {
const auto input = previous_layer_.Propagate(
transformed_features, buffer + kSelfBufferSize);
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_AVX2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
const __m256i kZero = _mm256_setzero_si256();
const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m256i Zero = _mm256_setzero_si256();
const __m256i Offsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
const auto in = reinterpret_cast<const __m256i*>(input);
const auto out = reinterpret_cast<__m256i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 0]),
_mm256_load_si256(&in[i * 4 + 1])), kWeightScaleBits);
_mm256_load_si256(&in[i * 4 + 1])), WeightScaleBits);
const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
_mm256_load_si256(&in[i * 4 + 2]),
_mm256_load_si256(&in[i * 4 + 3])), kWeightScaleBits);
_mm256_load_si256(&in[i * 4 + 3])), WeightScaleBits);
_mm256_store_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
_mm256_packs_epi16(words0, words1), kZero), kOffsets));
_mm256_packs_epi16(words0, words1), Zero), Offsets));
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_SSE2)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
#ifdef USE_SSE41
const __m128i kZero = _mm_setzero_si128();
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
const auto in = reinterpret_cast<const __m128i*>(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 1])), WeightScaleBits);
const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
_mm_load_si128(&in[i * 4 + 3])), WeightScaleBits);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, kZero)
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_MMX)
constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
constexpr IndexType NumChunks = InputDimensions / SimdWidth;
const __m64 k0x80s = _mm_set1_pi8(-128);
const auto in = reinterpret_cast<const __m64*>(input);
const auto out = reinterpret_cast<__m64*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
const __m64 words0 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
kWeightScaleBits);
WeightScaleBits);
const __m64 words1 = _mm_srai_pi16(
_mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
kWeightScaleBits);
WeightScaleBits);
const __m64 packedbytes = _mm_packs_pi16(words0, words1);
out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
}
_mm_empty();
constexpr IndexType kStart = kNumChunks * kSimdWidth;
constexpr IndexType Start = NumChunks * SimdWidth;
#elif defined(USE_NEON)
constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
const int8x8_t kZero = {0};
constexpr IndexType NumChunks = InputDimensions / (SimdWidth / 2);
const int8x8_t Zero = {0};
const auto in = reinterpret_cast<const int32x4_t*>(input);
const auto out = reinterpret_cast<int8x8_t*>(output);
for (IndexType i = 0; i < kNumChunks; ++i) {
for (IndexType i = 0; i < NumChunks; ++i) {
int16x8_t shifted;
const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
pack[0] = vqshrn_n_s32(in[i * 2 + 0], WeightScaleBits);
pack[1] = vqshrn_n_s32(in[i * 2 + 1], WeightScaleBits);
out[i] = vmax_s8(vqmovn_s16(shifted), Zero);
}
constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
constexpr IndexType Start = NumChunks * (SimdWidth / 2);
#else
constexpr IndexType kStart = 0;
constexpr IndexType Start = 0;
#endif
for (IndexType i = kStart; i < kInputDimensions; ++i) {
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast<OutputType>(
std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
std::max(0, std::min(127, input[i] >> WeightScaleBits)));
}
return output;
}
private:
PreviousLayer previous_layer_;
PreviousLayer previousLayer;
};
} // namespace Stockfish::Eval::NNUE::Layers

View File

@@ -26,38 +26,38 @@
namespace Stockfish::Eval::NNUE::Layers {
// Input layer
template <IndexType OutputDimensions, IndexType Offset = 0>
template <IndexType OutDims, IndexType Offset = 0>
class InputSlice {
public:
// Need to maintain alignment
static_assert(Offset % kMaxSimdWidth == 0, "");
static_assert(Offset % MaxSimdWidth == 0, "");
// Output type
using OutputType = TransformedFeatureType;
// Output dimensionality
static constexpr IndexType kOutputDimensions = OutputDimensions;
static constexpr IndexType OutputDimensions = OutDims;
// Size of forward propagation buffer used from the input layer to this layer
static constexpr std::size_t kBufferSize = 0;
static constexpr std::size_t BufferSize = 0;
// Hash value embedded in the evaluation file
static constexpr std::uint32_t GetHashValue() {
std::uint32_t hash_value = 0xEC42E90Du;
hash_value ^= kOutputDimensions ^ (Offset << 10);
return hash_value;
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0xEC42E90Du;
hashValue ^= OutputDimensions ^ (Offset << 10);
return hashValue;
}
// Read network parameters
bool ReadParameters(std::istream& /*stream*/) {
bool read_parameters(std::istream& /*stream*/) {
return true;
}
// Forward propagation
const OutputType* Propagate(
const TransformedFeatureType* transformed_features,
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures,
char* /*buffer*/) const {
return transformed_features + Offset;
return transformedFeatures + Offset;
}
private: