Use more_than_one() instead of single_bit()

It is more correct given what the function does. In
particular single_bit() returns true also in case of
empty bitboards.

Of course also the usual renaming while there :-)

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba
2012-04-14 09:16:34 +01:00
parent 25a9b601b2
commit f59323b56a
8 changed files with 67 additions and 68 deletions

View File

@@ -50,7 +50,7 @@ extern Bitboard ThisAndAdjacentFilesBB[8];
extern Bitboard InFrontBB[2][8];
extern Bitboard StepAttacksBB[16][64];
extern Bitboard BetweenBB[64][64];
extern Bitboard SquaresInFrontMask[2][64];
extern Bitboard ForwardBB[2][64];
extern Bitboard PassedPawnMask[2][64];
extern Bitboard AttackSpanMask[2][64];
extern Bitboard PseudoAttacks[6][64];
@@ -80,6 +80,13 @@ inline Bitboard operator^(Bitboard b, Square s) {
}
/// more_than_one() returns true if in 'b' there is more than one bit set
inline bool more_than_one(Bitboard b) {
return b & (b - 1);
}
/// rank_bb() and file_bb() take a file or a square as input and return
/// a bitboard representing all squares on the given file or rank.
@@ -131,48 +138,23 @@ inline Bitboard in_front_bb(Color c, Square s) {
}
/// Functions for computing sliding attack bitboards. Function attacks_bb() takes
/// a square and a bitboard of occupied squares as input, and returns a bitboard
/// representing all squares attacked by Pt (bishop or rook) on the given square.
template<PieceType Pt>
FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) {
/// between_bb returns a bitboard representing all squares between two squares.
/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for
/// square d5 and e6 set. If s1 and s2 are not on the same line, file or diagonal,
/// 0 is returned.
Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks;
Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics;
unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts;
if (Is64Bit)
return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]);
unsigned lo = unsigned(occ) & unsigned(Masks[s]);
unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32);
return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
}
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occ) {
Bitboard** const Attacks = Pt == ROOK ? RAttacks : BAttacks;
return Attacks[s][magic_index<Pt>(s, occ)];
}
/// squares_between returns a bitboard representing all squares between
/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a
/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not
/// on the same line, file or diagonal, EmptyBoardBB is returned.
inline Bitboard squares_between(Square s1, Square s2) {
inline Bitboard between_bb(Square s1, Square s2) {
return BetweenBB[s1][s2];
}
/// squares_in_front_of takes a color and a square as input, and returns a
/// bitboard representing all squares along the line in front of the square,
/// from the point of view of the given color. Definition of the table is:
/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s)
/// forward_bb takes a color and a square as input, and returns a bitboard
/// representing all squares along the line in front of the square, from the
/// point of view of the given color. Definition of the table is:
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
inline Bitboard squares_in_front_of(Color c, Square s) {
return SquaresInFrontMask[c][s];
inline Bitboard forward_bb(Color c, Square s) {
return ForwardBB[c][s];
}
@@ -214,11 +196,28 @@ inline Bitboard same_color_squares(Square s) {
}
/// single_bit() returns true if in the 'b' bitboard is set a single bit (or if
/// b == 0).
/// Functions for computing sliding attack bitboards. Function attacks_bb() takes
/// a square and a bitboard of occupied squares as input, and returns a bitboard
/// representing all squares attacked by Pt (bishop or rook) on the given square.
template<PieceType Pt>
FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) {
inline bool single_bit(Bitboard b) {
return !(b & (b - 1));
Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks;
Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics;
unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts;
if (Is64Bit)
return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]);
unsigned lo = unsigned(occ) & unsigned(Masks[s]);
unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32);
return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
}
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occ) {
Bitboard** const Attacks = Pt == ROOK ? RAttacks : BAttacks;
return Attacks[s][magic_index<Pt>(s, occ)];
}