mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-25 11:36:51 +08:00
Cleanup around get_loss
This commit is contained in:
@@ -213,9 +213,9 @@ namespace Learner
|
||||
static thread_local auto outcome_loss_ = -(t_ * log(q_) + (1.0 - t_) * log(1.0 - q_));
|
||||
static thread_local auto result_ = lambda_ * teacher_loss_ + (1.0 - lambda_) * outcome_loss_;
|
||||
static thread_local auto entropy_ = lambda_ * teacher_entropy_ + (1.0 - lambda_) * outcome_entropy_;
|
||||
static thread_local auto loss_ = result_ - entropy_;
|
||||
static thread_local auto cross_entropy_ = result_ - entropy_;
|
||||
|
||||
return loss_;
|
||||
return cross_entropy_;
|
||||
}
|
||||
|
||||
template <typename ValueT>
|
||||
@@ -247,23 +247,27 @@ namespace Learner
|
||||
return perf_;
|
||||
}
|
||||
|
||||
static ValueWithGrad<double> get_loss(Value shallow, Value teacher_signal, int result, int ply)
|
||||
static ValueWithGrad<double> get_loss_noob(Value shallow, Value teacher_signal, int result, int /* ply */)
|
||||
{
|
||||
using namespace Learner::Autograd::UnivariateStatic;
|
||||
|
||||
/*
|
||||
auto q_ = sigmoid(VariableParameter<double, 0>{} * winning_probability_coefficient);
|
||||
auto p_ = sigmoid(ConstantParameter<double, 1>{} * winning_probability_coefficient);
|
||||
auto t_ = (ConstantParameter<double, 2>{} + 1.0) * 0.5;
|
||||
auto lambda_ = ConstantParameter<double, 3>{};
|
||||
auto loss_ = pow(lambda_ * (q_ - p_) + (1.0 - lambda_) * (q_ - t_), 2.0);
|
||||
*/
|
||||
static thread_local auto q_ = VariableParameter<double, 0>{};
|
||||
static thread_local auto p_ = ConstantParameter<double, 1>{};
|
||||
static thread_local auto loss_ = pow(q_ - p_, 2.0) * (1.0 / (2400.0 * 2.0 * 600.0));
|
||||
|
||||
/*
|
||||
auto q_ = VariableParameter<double, 0>{};
|
||||
auto p_ = ConstantParameter<double, 1>{};
|
||||
auto loss_ = pow(q_ - p_, 2.0) * (1.0 / (2400.0 * 2.0 * 600.0));
|
||||
*/
|
||||
auto args = std::tuple(
|
||||
(double)shallow,
|
||||
(double)teacher_signal,
|
||||
(double)result,
|
||||
calculate_lambda(teacher_signal)
|
||||
);
|
||||
|
||||
return loss_.eval(args);
|
||||
}
|
||||
|
||||
static ValueWithGrad<double> get_loss_cross_entropy(Value shallow, Value teacher_signal, int result, int /* ply */)
|
||||
{
|
||||
using namespace Learner::Autograd::UnivariateStatic;
|
||||
|
||||
static thread_local auto q_ = expected_perf_(VariableParameter<double, 0>{});
|
||||
static thread_local auto p_ = expected_perf_(scale_score_(ConstantParameter<double, 1>{}));
|
||||
@@ -281,6 +285,13 @@ namespace Learner
|
||||
return loss_.eval(args);
|
||||
}
|
||||
|
||||
static auto get_loss(Value shallow, Value teacher_signal, int result, int ply)
|
||||
{
|
||||
using namespace Learner::Autograd::UnivariateStatic;
|
||||
|
||||
return get_loss_cross_entropy(shallow, teacher_signal, result, ply);
|
||||
}
|
||||
|
||||
static auto get_loss(
|
||||
Value teacher_signal,
|
||||
Value shallow,
|
||||
|
||||
Reference in New Issue
Block a user