diff --git a/src/learn/learn.cpp b/src/learn/learn.cpp index 6257d920..c9313575 100644 --- a/src/learn/learn.cpp +++ b/src/learn/learn.cpp @@ -141,7 +141,7 @@ namespace Learner void print(const std::string& prefix, ostream& s) const { s - << "INFO: " + << "--> " << prefix << "_cross_entropy_eval = " << cross_entropy_eval / count << " , " << prefix << "_cross_entropy_win = " << cross_entropy_win / count << " , " << prefix << "_entropy_eval = " << entropy_eval / count @@ -722,7 +722,7 @@ namespace Learner if (psv.size() && test_loss_sum.count > 0.0) { - cout << "INFO: norm = " << sum_norm + cout << "--> norm = " << sum_norm << " , move accuracy = " << (move_accord_count * 100.0 / psv.size()) << "%" << endl; diff --git a/src/nnue/trainer/trainer_clipped_relu.h b/src/nnue/trainer/trainer_clipped_relu.h index 35503493..d1dd738b 100644 --- a/src/nnue/trainer/trainer_clipped_relu.h +++ b/src/nnue/trainer/trainer_clipped_relu.h @@ -99,8 +99,13 @@ namespace Eval::NNUE { const auto smallest_max_activation = *std::min_element( std::begin(max_activations_), std::end(max_activations_)); - std::cout << "INFO: largest min activation = " << largest_min_activation - << ", smallest max activation = " << smallest_max_activation + std::cout << "INFO (check_health):" + << " layer = " << LayerType::kLayerIndex + << " , name = " << LayerType::get_name() + << std::endl; + + std::cout << "--> largest min activation = " << largest_min_activation + << " , smallest max activation = " << smallest_max_activation << std::endl; std::fill(std::begin(min_activations_), std::end(min_activations_), diff --git a/src/nnue/trainer/trainer_feature_transformer.h b/src/nnue/trainer/trainer_feature_transformer.h index 2311fc0c..dbfe18a2 100644 --- a/src/nnue/trainer/trainer_feature_transformer.h +++ b/src/nnue/trainer/trainer_feature_transformer.h @@ -330,25 +330,32 @@ namespace Eval::NNUE { // Check if there are any problems with learning void check_health() { - std::cout << "INFO: observed " << observed_features.count() - << " (out of " << kInputDimensions << ") features" << std::endl; + std::cout << "INFO (check_health):" + << " layer = " << LayerType::kLayerIndex + << " , name = " << LayerType::get_name() + << std::endl; + + std::cout << "--> observed " << observed_features.count() + << " (out of " << kInputDimensions << ") features" + << std::endl; constexpr LearnFloatType kPreActivationLimit = std::numeric_limits::max() / kWeightScale; - std::cout << "INFO: (min, max) of pre-activations = " + std::cout << "--> (min, max) of pre-activations = " << min_pre_activation_ << ", " << max_pre_activation_ << " (limit = " - << kPreActivationLimit << ")" << std::endl; + << kPreActivationLimit << ")" + << std::endl; const auto largest_min_activation = *std::max_element( std::begin(min_activations_), std::end(min_activations_)); const auto smallest_max_activation = *std::min_element( std::begin(max_activations_), std::end(max_activations_)); - std::cout << "INFO: largest min activation = " << largest_min_activation - << ", smallest max activation = " << smallest_max_activation + std::cout << "--> largest min activation = " << largest_min_activation + << " , smallest max activation = " << smallest_max_activation << std::endl; std::fill(std::begin(min_activations_), std::end(min_activations_),