mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-20 17:16:33 +08:00
Initial import of Glaurung 2.1
This commit is contained in:
867
src/endgame.cpp
Normal file
867
src/endgame.cpp
Normal file
@@ -0,0 +1,867 @@
|
||||
/*
|
||||
Glaurung, a UCI chess playing engine.
|
||||
Copyright (C) 2004-2008 Tord Romstad
|
||||
|
||||
Glaurung is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Glaurung is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
////
|
||||
//// Includes
|
||||
////
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "bitbase.h"
|
||||
#include "endgame.h"
|
||||
|
||||
|
||||
////
|
||||
//// Constants and variables
|
||||
////
|
||||
|
||||
/// Evaluation functions
|
||||
|
||||
// Generic "mate lone king" eval:
|
||||
KXKEvaluationFunction EvaluateKXK = KXKEvaluationFunction(WHITE);
|
||||
KXKEvaluationFunction EvaluateKKX = KXKEvaluationFunction(BLACK);
|
||||
|
||||
// KBN vs K:
|
||||
KBNKEvaluationFunction EvaluateKBNK = KBNKEvaluationFunction(WHITE);
|
||||
KBNKEvaluationFunction EvaluateKKBN = KBNKEvaluationFunction(BLACK);
|
||||
|
||||
// KP vs K:
|
||||
KPKEvaluationFunction EvaluateKPK = KPKEvaluationFunction(WHITE);
|
||||
KPKEvaluationFunction EvaluateKKP = KPKEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KP:
|
||||
KRKPEvaluationFunction EvaluateKRKP = KRKPEvaluationFunction(WHITE);
|
||||
KRKPEvaluationFunction EvaluateKPKR = KRKPEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KB:
|
||||
KRKBEvaluationFunction EvaluateKRKB = KRKBEvaluationFunction(WHITE);
|
||||
KRKBEvaluationFunction EvaluateKBKR = KRKBEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KN:
|
||||
KRKNEvaluationFunction EvaluateKRKN = KRKNEvaluationFunction(WHITE);
|
||||
KRKNEvaluationFunction EvaluateKNKR = KRKNEvaluationFunction(BLACK);
|
||||
|
||||
// KQ vs KR:
|
||||
KQKREvaluationFunction EvaluateKQKR = KQKREvaluationFunction(WHITE);
|
||||
KQKREvaluationFunction EvaluateKRKQ = KQKREvaluationFunction(BLACK);
|
||||
|
||||
|
||||
/// Scaling functions
|
||||
|
||||
// KBP vs K:
|
||||
KBPKScalingFunction ScaleKBPK = KBPKScalingFunction(WHITE);
|
||||
KBPKScalingFunction ScaleKKBP = KBPKScalingFunction(BLACK);
|
||||
|
||||
// KQ vs KRP:
|
||||
KQKRPScalingFunction ScaleKQKRP = KQKRPScalingFunction(WHITE);
|
||||
KQKRPScalingFunction ScaleKRPKQ = KQKRPScalingFunction(BLACK);
|
||||
|
||||
// KRP vs KR:
|
||||
KRPKRScalingFunction ScaleKRPKR = KRPKRScalingFunction(WHITE);
|
||||
KRPKRScalingFunction ScaleKRKRP = KRPKRScalingFunction(BLACK);
|
||||
|
||||
// KRPP vs KRP:
|
||||
KRPPKRPScalingFunction ScaleKRPPKRP = KRPPKRPScalingFunction(WHITE);
|
||||
KRPPKRPScalingFunction ScaleKRPKRPP = KRPPKRPScalingFunction(BLACK);
|
||||
|
||||
// King and pawns vs king:
|
||||
KPsKScalingFunction ScaleKPsK = KPsKScalingFunction(WHITE);
|
||||
KPsKScalingFunction ScaleKKPs = KPsKScalingFunction(BLACK);
|
||||
|
||||
// KBP vs KB:
|
||||
KBPKBScalingFunction ScaleKBPKB = KBPKBScalingFunction(WHITE);
|
||||
KBPKBScalingFunction ScaleKBKBP = KBPKBScalingFunction(BLACK);
|
||||
|
||||
// KBP vs KN:
|
||||
KBPKNScalingFunction ScaleKBPKN = KBPKNScalingFunction(WHITE);
|
||||
KBPKNScalingFunction ScaleKNKBP = KBPKNScalingFunction(BLACK);
|
||||
|
||||
// KNP vs K:
|
||||
KNPKScalingFunction ScaleKNPK = KNPKScalingFunction(WHITE);
|
||||
KNPKScalingFunction ScaleKKNP = KNPKScalingFunction(BLACK);
|
||||
|
||||
// KPKP
|
||||
KPKPScalingFunction ScaleKPKPw = KPKPScalingFunction(WHITE);
|
||||
KPKPScalingFunction ScaleKPKPb = KPKPScalingFunction(BLACK);
|
||||
|
||||
|
||||
////
|
||||
//// Local definitions
|
||||
////
|
||||
|
||||
namespace {
|
||||
|
||||
// Table used to drive the defending king towards the edge of the board
|
||||
// in KX vs K and KQ vs KR endgames:
|
||||
const uint8_t MateTable[64] = {
|
||||
100, 90, 80, 70, 70, 80, 90, 100,
|
||||
90, 70, 60, 50, 50, 60, 70, 90,
|
||||
80, 60, 40, 30, 30, 40, 60, 80,
|
||||
70, 50, 30, 20, 20, 30, 50, 70,
|
||||
70, 50, 30, 20, 20, 30, 50, 70,
|
||||
80, 60, 40, 30, 30, 40, 60, 80,
|
||||
90, 70, 60, 50, 50, 60, 70, 90,
|
||||
100, 90, 80, 70, 70, 80, 90, 100,
|
||||
};
|
||||
|
||||
// Table used to drive the defending king towards a corner square of the
|
||||
// right color in KBN vs K endgames:
|
||||
const uint8_t KBNKMateTable[64] = {
|
||||
200, 190, 180, 170, 160, 150, 140, 130,
|
||||
190, 180, 170, 160, 150, 140, 130, 140,
|
||||
180, 170, 155, 140, 140, 125, 140, 150,
|
||||
170, 160, 140, 120, 110, 140, 150, 160,
|
||||
160, 150, 140, 110, 120, 140, 160, 170,
|
||||
150, 140, 125, 140, 140, 155, 170, 180,
|
||||
140, 130, 140, 150, 160, 170, 180, 190,
|
||||
130, 140, 150, 160, 170, 180, 190, 200
|
||||
};
|
||||
|
||||
// The attacking side is given a descending bonus based on distance between
|
||||
// the two kings in basic endgames:
|
||||
const int DistanceBonus[8] = {0, 0, 100, 80, 60, 40, 20, 10};
|
||||
|
||||
// Bitbase for KP vs K:
|
||||
uint8_t KPKBitbase[24576];
|
||||
|
||||
// Penalty for big distance between king and knight for the defending king
|
||||
// and knight in KR vs KN endgames:
|
||||
const int KRKNKingKnightDistancePenalty[8] = { 0, 0, 4, 10, 20, 32, 48, 70 };
|
||||
|
||||
// Various inline functions for accessing the above arrays:
|
||||
|
||||
inline Value mate_table(Square s) {
|
||||
return Value(MateTable[s]);
|
||||
}
|
||||
|
||||
inline Value kbnk_mate_table(Square s) {
|
||||
return Value(KBNKMateTable[s]);
|
||||
}
|
||||
|
||||
inline Value distance_bonus(int d) {
|
||||
return Value(DistanceBonus[d]);
|
||||
}
|
||||
|
||||
inline Value krkn_king_knight_distance_penalty(int d) {
|
||||
return Value(KRKNKingKnightDistancePenalty[d]);
|
||||
}
|
||||
|
||||
// Function for probing the KP vs K bitbase:
|
||||
int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm);
|
||||
|
||||
}
|
||||
|
||||
|
||||
////
|
||||
//// Functions
|
||||
////
|
||||
|
||||
/// Constructors
|
||||
|
||||
EndgameEvaluationFunction::EndgameEvaluationFunction(Color c) {
|
||||
strongerSide = c;
|
||||
weakerSide = opposite_color(strongerSide);
|
||||
}
|
||||
|
||||
KXKEvaluationFunction::KXKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KBNKEvaluationFunction::KBNKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KPKEvaluationFunction::KPKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KRKPEvaluationFunction::KRKPEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KRKBEvaluationFunction::KRKBEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KRKNEvaluationFunction::KRKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
KQKREvaluationFunction::KQKREvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
|
||||
|
||||
|
||||
ScalingFunction::ScalingFunction(Color c) {
|
||||
strongerSide = c;
|
||||
weakerSide = opposite_color(c);
|
||||
}
|
||||
|
||||
KBPKScalingFunction::KBPKScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KQKRPScalingFunction::KQKRPScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KRPKRScalingFunction::KRPKRScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KRPPKRPScalingFunction::KRPPKRPScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KPsKScalingFunction::KPsKScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KBPKBScalingFunction::KBPKBScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KBPKNScalingFunction::KBPKNScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KNPKScalingFunction::KNPKScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
KPKPScalingFunction::KPKPScalingFunction(Color c) : ScalingFunction(c) { }
|
||||
|
||||
|
||||
/// Mate with KX vs K. This function is used to evaluate positions with
|
||||
/// King and plenty of material vs a lone king. It simply gives the
|
||||
/// attacking side a bonus for driving the defending king towards the edge
|
||||
/// of the board, and for keeping the distance between the two kings small.
|
||||
|
||||
Value KXKEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(weakerSide) == Value(0));
|
||||
|
||||
Square winnerKSq = pos.king_square(strongerSide);
|
||||
Square loserKSq = pos.king_square(weakerSide);
|
||||
|
||||
Value result =
|
||||
pos.non_pawn_material(strongerSide) +
|
||||
pos.pawn_count(strongerSide) * PawnValueEndgame +
|
||||
mate_table(loserKSq) +
|
||||
distance_bonus(square_distance(winnerKSq, loserKSq));
|
||||
|
||||
if(pos.queen_count(strongerSide) > 0 || pos.rook_count(strongerSide) > 0 ||
|
||||
pos.bishop_count(strongerSide) > 1)
|
||||
// TODO: check for two equal-colored bishops!
|
||||
result += VALUE_KNOWN_WIN;
|
||||
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
|
||||
/// defending king towards a corner square of the right color.
|
||||
|
||||
Value KBNKEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(weakerSide) == Value(0));
|
||||
assert(pos.non_pawn_material(strongerSide) ==
|
||||
KnightValueMidgame + BishopValueMidgame);
|
||||
assert(pos.bishop_count(strongerSide) == 1);
|
||||
assert(pos.knight_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
|
||||
Square winnerKSq = pos.king_square(strongerSide);
|
||||
Square loserKSq = pos.king_square(weakerSide);
|
||||
Square bishopSquare = pos.bishop_list(strongerSide, 0);
|
||||
|
||||
if(square_color(bishopSquare) == BLACK) {
|
||||
winnerKSq = flop_square(winnerKSq);
|
||||
loserKSq = flop_square(loserKSq);
|
||||
}
|
||||
|
||||
Value result =
|
||||
VALUE_KNOWN_WIN + distance_bonus(square_distance(winnerKSq, loserKSq)) +
|
||||
kbnk_mate_table(loserKSq);
|
||||
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KP vs K. This endgame is evaluated with the help of a bitbase.
|
||||
|
||||
Value KPKEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == Value(0));
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square wksq, bksq, wpsq;
|
||||
Color stm;
|
||||
|
||||
if(strongerSide == WHITE) {
|
||||
wksq = pos.king_square(WHITE);
|
||||
bksq = pos.king_square(BLACK);
|
||||
wpsq = pos.pawn_list(WHITE, 0);
|
||||
stm = pos.side_to_move();
|
||||
}
|
||||
else {
|
||||
wksq = flip_square(pos.king_square(BLACK));
|
||||
bksq = flip_square(pos.king_square(WHITE));
|
||||
wpsq = flip_square(pos.pawn_list(BLACK, 0));
|
||||
stm = opposite_color(pos.side_to_move());
|
||||
}
|
||||
|
||||
if(square_file(wpsq) >= FILE_E) {
|
||||
wksq = flop_square(wksq);
|
||||
bksq = flop_square(bksq);
|
||||
wpsq = flop_square(wpsq);
|
||||
}
|
||||
|
||||
if(probe_kpk(wksq, wpsq, bksq, stm)) {
|
||||
Value result =
|
||||
VALUE_KNOWN_WIN + PawnValueEndgame + Value(square_rank(wpsq));
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
return VALUE_DRAW;
|
||||
}
|
||||
|
||||
|
||||
/// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
|
||||
/// a bitbase. The function below returns drawish scores when the pawn is
|
||||
/// far advanced with support of the king, while the attacking king is far
|
||||
/// away.
|
||||
|
||||
Value KRKPEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
assert(pos.non_pawn_material(weakerSide) == 0);
|
||||
assert(pos.pawn_count(weakerSide) == 1);
|
||||
|
||||
Square wksq, wrsq, bksq, bpsq;
|
||||
int tempo = (pos.side_to_move() == strongerSide);
|
||||
|
||||
wksq = pos.king_square(strongerSide);
|
||||
wrsq = pos.rook_list(strongerSide, 0);
|
||||
bksq = pos.king_square(weakerSide);
|
||||
bpsq = pos.pawn_list(weakerSide, 0);
|
||||
|
||||
if(strongerSide == BLACK) {
|
||||
wksq = flip_square(wksq);
|
||||
wrsq = flip_square(wrsq);
|
||||
bksq = flip_square(bksq);
|
||||
bpsq = flip_square(bpsq);
|
||||
}
|
||||
|
||||
Square queeningSq = make_square(square_file(bpsq), RANK_1);
|
||||
Value result;
|
||||
|
||||
// If the stronger side's king is in front of the pawn, it's a win:
|
||||
if(wksq < bpsq && square_file(wksq) == square_file(bpsq))
|
||||
result = RookValueEndgame - Value(square_distance(wksq, bpsq));
|
||||
|
||||
// If the weaker side's king is too far from the pawn and the rook,
|
||||
// it's a win:
|
||||
else if(square_distance(bksq, bpsq) - (tempo^1) >= 3 &&
|
||||
square_distance(bksq, wrsq) >= 3)
|
||||
result = RookValueEndgame - Value(square_distance(wksq, bpsq));
|
||||
|
||||
// If the pawn is far advanced and supported by the defending king,
|
||||
// the position is drawish:
|
||||
else if(square_rank(bksq) <= RANK_3 && square_distance(bksq, bpsq) == 1 &&
|
||||
square_rank(wksq) >= RANK_4 &&
|
||||
square_distance(wksq, bpsq) - tempo > 2)
|
||||
result = Value(80 - square_distance(wksq, bpsq) * 8);
|
||||
|
||||
else
|
||||
result = Value(200)
|
||||
- Value(square_distance(wksq, bpsq + DELTA_S) * 8)
|
||||
+ Value(square_distance(bksq, bpsq + DELTA_S) * 8)
|
||||
+ Value(square_distance(bpsq, queeningSq) * 8);
|
||||
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KR vs KB. This is very simple, and always returns drawish scores. The
|
||||
/// score is slightly bigger when the defending king is close to the edge.
|
||||
|
||||
Value KRKBEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
assert(pos.bishop_count(weakerSide) == 1);
|
||||
|
||||
Value result = mate_table(pos.king_square(weakerSide));
|
||||
return (pos.side_to_move() == strongerSide)? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KR vs KN. The attacking side has slightly better winning chances than
|
||||
/// in KR vs KB, particularly if the king and the knight are far apart.
|
||||
|
||||
Value KRKNEvaluationFunction::apply(const Position &pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
assert(pos.knight_count(weakerSide) == 1);
|
||||
|
||||
Square defendingKSq = pos.king_square(weakerSide);
|
||||
Square nSq = pos.knight_list(weakerSide, 0);
|
||||
|
||||
Value result = Value(10) + mate_table(defendingKSq) +
|
||||
krkn_king_knight_distance_penalty(square_distance(defendingKSq, nSq));
|
||||
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KQ vs KR. This is almost identical to KX vs K: We give the attacking
|
||||
/// king a bonus for having the kings close together, and for forcing the
|
||||
/// defending king towards the edge. If we also take care to avoid null move
|
||||
/// for the defending side in the search, this is usually sufficient to be
|
||||
/// able to win KQ vs KR.
|
||||
|
||||
Value KQKREvaluationFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square winnerKSq = pos.king_square(strongerSide);
|
||||
Square loserKSq = pos.king_square(weakerSide);
|
||||
|
||||
Value result = QueenValueEndgame - RookValueEndgame +
|
||||
mate_table(loserKSq) + distance_bonus(square_distance(winnerKSq, loserKSq));
|
||||
|
||||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
/// KBPKScalingFunction scales endgames where the stronger side has king,
|
||||
/// bishop and one or more pawns. It checks for draws with rook pawns and a
|
||||
/// bishop of the wrong color. If such a draw is detected, ScaleFactor(0) is
|
||||
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
|
||||
/// will be used.
|
||||
|
||||
ScaleFactor KBPKScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.bishop_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) >= 1);
|
||||
|
||||
// No assertions about the material of weakerSide, because we want draws to
|
||||
// be detected even when the weaker side has some pawns.
|
||||
|
||||
Bitboard pawns = pos.pawns(strongerSide);
|
||||
File pawnFile = square_file(pos.pawn_list(strongerSide, 0));
|
||||
|
||||
if((pawnFile == FILE_A || pawnFile == FILE_H) &&
|
||||
(pawns & ~file_bb(pawnFile)) == EmptyBoardBB) {
|
||||
// All pawns are on a single rook file.
|
||||
|
||||
Square bishopSq = pos.bishop_list(strongerSide, 0);
|
||||
Square queeningSq =
|
||||
relative_square(strongerSide, make_square(pawnFile, RANK_8));
|
||||
Square kingSq = pos.king_square(weakerSide);
|
||||
|
||||
if(square_color(queeningSq) != square_color(bishopSq) &&
|
||||
file_distance(square_file(kingSq), pawnFile) <= 1) {
|
||||
// The bishop has the wrong color, and the defending king is on the
|
||||
// file of the pawn(s) or the neighboring file. Find the rank of the
|
||||
// frontmost pawn:
|
||||
|
||||
Rank rank;
|
||||
if(strongerSide == WHITE) {
|
||||
for(rank = RANK_7; (rank_bb(rank) & pawns) == EmptyBoardBB; rank--);
|
||||
assert(rank >= RANK_2 && rank <= RANK_7);
|
||||
}
|
||||
else {
|
||||
for(rank = RANK_2; (rank_bb(rank) & pawns) == EmptyBoardBB; rank++);
|
||||
rank = Rank(rank^7); // HACK
|
||||
assert(rank >= RANK_2 && rank <= RANK_7);
|
||||
}
|
||||
// If the defending king has distance 1 to the promotion square or
|
||||
// is placed somewhere in front of the pawn, it's a draw.
|
||||
if(square_distance(kingSq, queeningSq) <= 1 ||
|
||||
pawn_rank(strongerSide, kingSq) >= rank)
|
||||
return ScaleFactor(0);
|
||||
}
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KQKRPScalingFunction scales endgames where the stronger side has only
|
||||
/// king and queen, while the weaker side has at least a rook and a pawn.
|
||||
/// It tests for fortress draws with a rook on the third rank defended by
|
||||
/// a pawn.
|
||||
|
||||
ScaleFactor KQKRPScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.queen_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) == 0);
|
||||
assert(pos.rook_count(weakerSide) == 1);
|
||||
assert(pos.pawn_count(weakerSide) >= 1);
|
||||
|
||||
Square kingSq = pos.king_square(weakerSide);
|
||||
if(pawn_rank(weakerSide, kingSq) <= RANK_2 &&
|
||||
pawn_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4 &&
|
||||
(pos.rooks(weakerSide) & relative_rank_bb(weakerSide, RANK_3)) &&
|
||||
(pos.pawns(weakerSide) & relative_rank_bb(weakerSide, RANK_2)) &&
|
||||
(pos.king_attacks(kingSq) & pos.pawns(weakerSide))) {
|
||||
Square rsq = pos.rook_list(weakerSide, 0);
|
||||
if(pos.pawn_attacks(strongerSide, rsq) & pos.pawns(weakerSide))
|
||||
return ScaleFactor(0);
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KRPKRScalingFunction scales KRP vs KR endgames. This function knows a
|
||||
/// handful of the most important classes of drawn positions, but is far
|
||||
/// from perfect. It would probably be a good idea to add more knowledge
|
||||
/// in the future.
|
||||
///
|
||||
/// It would also be nice to rewrite the actual code for this function,
|
||||
/// which is mostly copied from Glaurung 1.x, and not very pretty.
|
||||
|
||||
ScaleFactor KRPKRScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 1);
|
||||
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square wksq = pos.king_square(strongerSide);
|
||||
Square wrsq = pos.rook_list(strongerSide, 0);
|
||||
Square wpsq = pos.pawn_list(strongerSide, 0);
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
Square brsq = pos.rook_list(weakerSide, 0);
|
||||
|
||||
// Orient the board in such a way that the stronger side is white, and the
|
||||
// pawn is on the left half of the board:
|
||||
if(strongerSide == BLACK) {
|
||||
wksq = flip_square(wksq);
|
||||
wrsq = flip_square(wrsq);
|
||||
wpsq = flip_square(wpsq);
|
||||
bksq = flip_square(bksq);
|
||||
brsq = flip_square(brsq);
|
||||
}
|
||||
if(square_file(wpsq) > FILE_D) {
|
||||
wksq = flop_square(wksq);
|
||||
wrsq = flop_square(wrsq);
|
||||
wpsq = flop_square(wpsq);
|
||||
bksq = flop_square(bksq);
|
||||
brsq = flop_square(brsq);
|
||||
}
|
||||
|
||||
File f = square_file(wpsq);
|
||||
Rank r = square_rank(wpsq);
|
||||
Square queeningSq = make_square(f, RANK_8);
|
||||
int tempo = (pos.side_to_move() == strongerSide);
|
||||
|
||||
// If the pawn is not too far advanced and the defending king defends the
|
||||
// queening square, use the third-rank defence:
|
||||
if(r <= RANK_5 && square_distance(bksq, queeningSq) <= 1 && wksq <= SQ_H5 &&
|
||||
(square_rank(brsq) == RANK_6 || (r <= RANK_3 &&
|
||||
square_rank(wrsq) != RANK_6)))
|
||||
return ScaleFactor(0);
|
||||
|
||||
// The defending side saves a draw by checking from behind in case the pawn
|
||||
// has advanced to the 6th rank with the king behind.
|
||||
if(r == RANK_6 && square_distance(bksq, queeningSq) <= 1 &&
|
||||
square_rank(wksq) + tempo <= RANK_6 &&
|
||||
(square_rank(brsq) == RANK_1 ||
|
||||
(!tempo && abs(square_file(brsq) - f) >= 3)))
|
||||
return ScaleFactor(0);
|
||||
|
||||
if(r >= RANK_6 && bksq == queeningSq && square_rank(brsq) == RANK_1 &&
|
||||
(!tempo || square_distance(wksq, wpsq) >= 2))
|
||||
return ScaleFactor(0);
|
||||
|
||||
// White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
|
||||
// and the black rook is behind the pawn.
|
||||
if(wpsq == SQ_A7 && wrsq == SQ_A8 && (bksq == SQ_H7 || bksq == SQ_G7) &&
|
||||
square_file(brsq) == FILE_A &&
|
||||
(square_rank(brsq) <= RANK_3 || square_file(wksq) >= FILE_D ||
|
||||
square_rank(wksq) <= RANK_5))
|
||||
return ScaleFactor(0);
|
||||
|
||||
// If the defending king blocks the pawn and the attacking king is too far
|
||||
// away, it's a draw.
|
||||
if(r <= RANK_5 && bksq == wpsq + DELTA_N &&
|
||||
square_distance(wksq, wpsq) - tempo >= 2 &&
|
||||
square_distance(wksq, brsq) - tempo >= 2)
|
||||
return ScaleFactor(0);
|
||||
|
||||
// Pawn on the 7th rank supported by the rook from behind usually wins if the
|
||||
// attacking king is closer to the queening square than the defending king,
|
||||
// and the defending king cannot gain tempi by threatening the attacking
|
||||
// rook.
|
||||
if(r == RANK_7 && f != FILE_A && square_file(wrsq) == f
|
||||
&& wrsq != queeningSq
|
||||
&& (square_distance(wksq, queeningSq) <
|
||||
square_distance(bksq, queeningSq) - 2 + tempo)
|
||||
&& (square_distance(wksq, queeningSq) <
|
||||
square_distance(bksq, wrsq) + tempo))
|
||||
return ScaleFactor(SCALE_FACTOR_MAX
|
||||
- 2 * square_distance(wksq, queeningSq));
|
||||
|
||||
// Similar to the above, but with the pawn further back:
|
||||
if(f != FILE_A && square_file(wrsq) == f && wrsq < wpsq
|
||||
&& (square_distance(wksq, queeningSq) <
|
||||
square_distance(bksq, queeningSq) - 2 + tempo)
|
||||
&& (square_distance(wksq, wpsq + DELTA_N) <
|
||||
square_distance(bksq, wpsq + DELTA_N) - 2 + tempo)
|
||||
&& (square_distance(bksq, wrsq) + tempo >= 3
|
||||
|| (square_distance(wksq, queeningSq) <
|
||||
square_distance(bksq, wrsq) + tempo
|
||||
&& (square_distance(wksq, wpsq + DELTA_N) <
|
||||
square_distance(bksq, wrsq) + tempo))))
|
||||
return
|
||||
ScaleFactor(SCALE_FACTOR_MAX
|
||||
- (8 * square_distance(wpsq, queeningSq) +
|
||||
2 * square_distance(wksq, queeningSq)));
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KRPPKRPScalingFunction scales KRPP vs KRP endgames. There is only a
|
||||
/// single pattern: If the stronger side has no pawns and the defending king
|
||||
/// is actively placed, the position is drawish.
|
||||
|
||||
ScaleFactor KRPPKRPScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(strongerSide) == 2);
|
||||
assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
|
||||
assert(pos.pawn_count(weakerSide) == 1);
|
||||
|
||||
Square wpsq1 = pos.pawn_list(strongerSide, 0);
|
||||
Square wpsq2 = pos.pawn_list(strongerSide, 1);
|
||||
Square bksq = pos.king_square(weakerSide);
|
||||
|
||||
// Does the stronger side have a passed pawn?
|
||||
if(pos.pawn_is_passed(strongerSide, wpsq1) ||
|
||||
pos.pawn_is_passed(strongerSide, wpsq2))
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
Rank r = Max(pawn_rank(strongerSide, wpsq1), pawn_rank(strongerSide, wpsq2));
|
||||
|
||||
if(file_distance(bksq, wpsq1) <= 1 && file_distance(bksq, wpsq2) <= 1
|
||||
&& pawn_rank(strongerSide, bksq) > r) {
|
||||
switch(r) {
|
||||
|
||||
case RANK_2: return ScaleFactor(10);
|
||||
case RANK_3: return ScaleFactor(10);
|
||||
case RANK_4: return ScaleFactor(15);
|
||||
case RANK_5: return ScaleFactor(20);
|
||||
case RANK_6: return ScaleFactor(40);
|
||||
default: assert(false);
|
||||
|
||||
}
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KPsKScalingFunction scales endgames with king and two or more pawns
|
||||
/// against king. There is just a single rule here: If all pawns are on
|
||||
/// the same rook file and are blocked by the defending king, it's a draw.
|
||||
|
||||
ScaleFactor KPsKScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == Value(0));
|
||||
assert(pos.pawn_count(strongerSide) >= 2);
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Bitboard pawns = pos.pawns(strongerSide);
|
||||
|
||||
// Are all pawns on the 'a' file?
|
||||
if((pawns & ~FileABB) == EmptyBoardBB) {
|
||||
// Does the defending king block the pawns?
|
||||
Square ksq = pos.king_square(weakerSide);
|
||||
if(square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1)
|
||||
return ScaleFactor(0);
|
||||
else if(square_file(ksq) == FILE_A &&
|
||||
(in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
|
||||
return ScaleFactor(0);
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
// Are all pawns on the 'h' file?
|
||||
else if((pawns & ~FileHBB) == EmptyBoardBB) {
|
||||
// Does the defending king block the pawns?
|
||||
Square ksq = pos.king_square(weakerSide);
|
||||
if(square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1)
|
||||
return ScaleFactor(0);
|
||||
else if(square_file(ksq) == FILE_H &&
|
||||
(in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
|
||||
return ScaleFactor(0);
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
else
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KBPKBScalingFunction scales KBP vs KB endgames. There are two rules:
|
||||
/// If the defending king is somewhere along the path of the pawn, and the
|
||||
/// square of the king is not of the same color as the stronger side's bishop,
|
||||
/// it's a draw. If the two bishops have opposite color, it's almost always
|
||||
/// a draw.
|
||||
|
||||
ScaleFactor KBPKBScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.bishop_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) == 1);
|
||||
assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
|
||||
assert(pos.bishop_count(weakerSide) == 1);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square pawnSq = pos.pawn_list(strongerSide, 0);
|
||||
Square strongerBishopSq = pos.bishop_list(strongerSide, 0);
|
||||
Square weakerBishopSq = pos.bishop_list(weakerSide, 0);
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
// Case 1: Defending king blocks the pawn, and cannot be driven away.
|
||||
if(square_file(weakerKingSq) == square_file(pawnSq)
|
||||
&& pawn_rank(strongerSide, pawnSq) < pawn_rank(strongerSide, weakerKingSq)
|
||||
&& (square_color(weakerKingSq) != square_color(strongerBishopSq)
|
||||
|| pawn_rank(strongerSide, weakerKingSq) <= RANK_6))
|
||||
return ScaleFactor(0);
|
||||
|
||||
// Case 2: Opposite colored bishops.
|
||||
if(square_color(strongerBishopSq) != square_color(weakerBishopSq)) {
|
||||
|
||||
// We assume that the position is drawn in the following three situations:
|
||||
//
|
||||
// a. The pawn is on rank 5 or further back.
|
||||
// b. The defending king is somewhere in the pawn's path.
|
||||
// c. The defending bishop attacks some square along the pawn's path,
|
||||
// and is at least three squares away from the pawn.
|
||||
//
|
||||
// These rules are probably not perfect, but in practice they work
|
||||
// reasonably well.
|
||||
|
||||
if(pawn_rank(strongerSide, pawnSq) <= RANK_5)
|
||||
return ScaleFactor(0);
|
||||
else {
|
||||
Bitboard ray =
|
||||
ray_bb(pawnSq, (strongerSide == WHITE)? SIGNED_DIR_N : SIGNED_DIR_S);
|
||||
if(ray & pos.kings(weakerSide))
|
||||
return ScaleFactor(0);
|
||||
if((pos.bishop_attacks(weakerBishopSq) & ray)
|
||||
&& square_distance(weakerBishopSq, pawnSq) >= 3)
|
||||
return ScaleFactor(0);
|
||||
}
|
||||
}
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KBPKNScalingFunction scales KBP vs KN endgames. There is a single rule:
|
||||
/// If the defending king is somewhere along the path of the pawn, and the
|
||||
/// square of the king is not of the same color as the stronger side's bishop,
|
||||
/// it's a draw.
|
||||
|
||||
ScaleFactor KBPKNScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.bishop_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) == 1);
|
||||
assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
|
||||
assert(pos.knight_count(weakerSide) == 1);
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square pawnSq = pos.pawn_list(strongerSide, 0);
|
||||
Square strongerBishopSq = pos.bishop_list(strongerSide, 0);
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
if(square_file(weakerKingSq) == square_file(pawnSq)
|
||||
&& pawn_rank(strongerSide, pawnSq) < pawn_rank(strongerSide, weakerKingSq)
|
||||
&& (square_color(weakerKingSq) != square_color(strongerBishopSq)
|
||||
|| pawn_rank(strongerSide, weakerKingSq) <= RANK_6))
|
||||
return ScaleFactor(0);
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KNPKScalingFunction scales KNP vs K endgames. There is a single rule:
|
||||
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
|
||||
/// the pawn from advancing, the position is drawn.
|
||||
|
||||
ScaleFactor KNPKScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
|
||||
assert(pos.knight_count(strongerSide) == 1);
|
||||
assert(pos.pawn_count(strongerSide) == 1);
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(weakerSide) == 0);
|
||||
|
||||
Square pawnSq = pos.pawn_list(strongerSide, 0);
|
||||
Square weakerKingSq = pos.king_square(weakerSide);
|
||||
|
||||
if(pawnSq == relative_square(strongerSide, SQ_A7) &&
|
||||
square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1)
|
||||
return ScaleFactor(0);
|
||||
|
||||
if(pawnSq == relative_square(strongerSide, SQ_H7) &&
|
||||
square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1)
|
||||
return ScaleFactor(0);
|
||||
|
||||
return SCALE_FACTOR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/// KPKPScalingFunction scales KP vs KP endgames. This is done by removing
|
||||
/// the weakest side's pawn and probing the KP vs K bitbase: If the weakest
|
||||
/// side has a draw without the pawn, she probably has at least a draw with
|
||||
/// the pawn as well. The exception is when the stronger side's pawn is far
|
||||
/// advanced and not on a rook file; in this case it is often possible to win
|
||||
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
|
||||
|
||||
ScaleFactor KPKPScalingFunction::apply(const Position &pos) {
|
||||
assert(pos.non_pawn_material(strongerSide) == Value(0));
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.pawn_count(WHITE) == 1);
|
||||
assert(pos.pawn_count(BLACK) == 1);
|
||||
|
||||
Square wksq, bksq, wpsq;
|
||||
Color stm;
|
||||
|
||||
if(strongerSide == WHITE) {
|
||||
wksq = pos.king_square(WHITE);
|
||||
bksq = pos.king_square(BLACK);
|
||||
wpsq = pos.pawn_list(WHITE, 0);
|
||||
stm = pos.side_to_move();
|
||||
}
|
||||
else {
|
||||
wksq = flip_square(pos.king_square(BLACK));
|
||||
bksq = flip_square(pos.king_square(WHITE));
|
||||
wpsq = flip_square(pos.pawn_list(BLACK, 0));
|
||||
stm = opposite_color(pos.side_to_move());
|
||||
}
|
||||
|
||||
if(square_file(wpsq) >= FILE_E) {
|
||||
wksq = flop_square(wksq);
|
||||
bksq = flop_square(bksq);
|
||||
wpsq = flop_square(wpsq);
|
||||
}
|
||||
|
||||
// If the pawn has advanced to the fifth rank or further, and is not a
|
||||
// rook pawn, it's too dangerous to assume that it's at least a draw.
|
||||
if(square_rank(wpsq) >= RANK_5 && square_file(wpsq) != FILE_A)
|
||||
return SCALE_FACTOR_NONE;
|
||||
|
||||
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a
|
||||
// draw, it's probably at least a draw even with the pawn.
|
||||
if(probe_kpk(wksq, wpsq, bksq, stm))
|
||||
return SCALE_FACTOR_NONE;
|
||||
else
|
||||
return ScaleFactor(0);
|
||||
}
|
||||
|
||||
|
||||
/// init_bitbases() is called during program initialization, and simply loads
|
||||
/// bitbases from disk into memory. At the moment, there is only the bitbase
|
||||
/// for KP vs K, but we may decide to add other bitbases later.
|
||||
|
||||
void init_bitbases() {
|
||||
generate_kpk_bitbase(KPKBitbase);
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
// Probe the KP vs K bitbase:
|
||||
|
||||
int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm) {
|
||||
int wp = int(square_file(wpsq)) + (int(square_rank(wpsq)) - 1) * 4;
|
||||
int index = int(stm) + 2*int(bksq) + 128*int(wksq) + 8192*wp;
|
||||
|
||||
assert(index >= 0 && index < 24576*8);
|
||||
return KPKBitbase[index/8] & (1 << (index&7));
|
||||
}
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user