Move EndgameFunctions to endgame.cpp

And cleanup code while there.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba
2011-04-11 18:12:41 +02:00
parent 08c464c690
commit b5d5646c84
5 changed files with 201 additions and 209 deletions

View File

@@ -19,7 +19,6 @@
#include <cassert>
#include <cstring>
#include <map>
#include "material.h"
@@ -48,19 +47,15 @@ namespace {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
typedef map<Key, EF*> EFMap;
typedef map<Key, SF*> SFMap;
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
EvaluationFunction<KmmKm> EvaluateKmmKm[] = { EvaluationFunction<KmmKm>(WHITE), EvaluationFunction<KmmKm>(BLACK) };
EvaluationFunction<KXK> EvaluateKXK[] = { EvaluationFunction<KXK>(WHITE), EvaluationFunction<KXK>(BLACK) };
ScalingFunction<KBPsK> ScaleKBPsK[] = { ScalingFunction<KBPsK>(WHITE), ScalingFunction<KBPsK>(BLACK) };
ScalingFunction<KQKRPs> ScaleKQKRPs[] = { ScalingFunction<KQKRPs>(WHITE), ScalingFunction<KQKRPs>(BLACK) };
ScalingFunction<KPsK> ScaleKPsK[] = { ScalingFunction<KPsK>(WHITE), ScalingFunction<KPsK>(BLACK) };
ScalingFunction<KPKP> ScaleKPKP[] = { ScalingFunction<KPKP>(WHITE), ScalingFunction<KPKP>(BLACK) };
Endgame<Value, KmmKm> EvaluateKmmKm[] = { Endgame<Value, KmmKm>(WHITE), Endgame<Value, KmmKm>(BLACK) };
Endgame<Value, KXK> EvaluateKXK[] = { Endgame<Value, KXK>(WHITE), Endgame<Value, KXK>(BLACK) };
Endgame<ScaleFactor, KBPsK> ScaleKBPsK[] = { Endgame<ScaleFactor, KBPsK>(WHITE), Endgame<ScaleFactor, KBPsK>(BLACK) };
Endgame<ScaleFactor, KQKRPs> ScaleKQKRPs[] = { Endgame<ScaleFactor, KQKRPs>(WHITE), Endgame<ScaleFactor, KQKRPs>(BLACK) };
Endgame<ScaleFactor, KPsK> ScaleKPsK[] = { Endgame<ScaleFactor, KPsK>(WHITE), Endgame<ScaleFactor, KPsK>(BLACK) };
Endgame<ScaleFactor, KPKP> ScaleKPKP[] = { Endgame<ScaleFactor, KPKP>(WHITE), Endgame<ScaleFactor, KPKP>(BLACK) };
// Helper templates used to detect a given material distribution
template<Color Us> bool is_KXK(const Position& pos) {
@@ -84,42 +79,13 @@ namespace {
&& pos.piece_count(Them, ROOK) == 1
&& pos.piece_count(Them, PAWN) >= 1;
}
}
} // namespace
/// EndgameFunctions class stores endgame evaluation and scaling functions
/// in two std::map. Because STL library is not guaranteed to be thread
/// safe even for read access, the maps, although with identical content,
/// are replicated for each thread. This is faster then using locks.
/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, for evaluate and scaling functions...
pair<EFMap, SFMap> maps;
// ...and here is the accessing template function
template<typename T> const map<Key, T*>& get() const;
};
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const EFMap& EndgameFunctions::get<EF>() const { return maps.first; }
template<> const SFMap& EndgameFunctions::get<SF>() const { return maps.second; }
/// MaterialInfoTable c'tor and d'tor allocate and free the space for EndgameFunctions
MaterialInfoTable::MaterialInfoTable() { funcs = new EndgameFunctions(); }
MaterialInfoTable::MaterialInfoTable() { funcs = new Endgames(); }
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
@@ -151,7 +117,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
if ((mi->evaluationFunction = funcs->get<EndgameBase<Value> >(key)) != NULL)
return mi;
if (is_KXK<WHITE>(pos))
@@ -186,9 +152,9 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
SF* sf;
EndgameBase<ScaleFactor>* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
if ((sf = funcs->get<EndgameBase<ScaleFactor> >(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
@@ -277,7 +243,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, vv;
int pt1, pt2, pc, v;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
@@ -293,13 +259,13 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
if (!pc)
continue;
vv = LinearCoefficients[pt1];
v = LinearCoefficients[pt1];
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
vv += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * vv;
value += pc * v;
}
return value;
}
@@ -313,88 +279,7 @@ Phase MaterialInfoTable::game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
if (npm >= MidgameLimit)
return PHASE_MIDGAME;
if (npm <= EndgameLimit)
return PHASE_ENDGAME;
return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}
/// EndgameFunctions member definitions
EndgameFunctions::EndgameFunctions() {
add<EvaluationFunction<KNNK> >("KNNK");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (EFMap::const_iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete it->second;
for (SFMap::const_iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete it->second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
// Build up a fen string with the given pieces, note that
// the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
typedef map<Key, F*> M;
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
return npm >= MidgameLimit ? PHASE_MIDGAME
: npm <= EndgameLimit ? PHASE_ENDGAME
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}