mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-19 16:46:30 +08:00
Move EndgameFunctions to endgame.cpp
And cleanup code while there. No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
129
src/endgame.cpp
129
src/endgame.cpp
@@ -23,6 +23,8 @@
|
||||
#include "endgame.h"
|
||||
#include "pawns.h"
|
||||
|
||||
using std::string;
|
||||
|
||||
extern uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm);
|
||||
|
||||
namespace {
|
||||
@@ -78,15 +80,102 @@ namespace {
|
||||
return Value(KRKNKingKnightDistancePenalty[d]);
|
||||
}
|
||||
|
||||
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
|
||||
const string swapColors(const string& keyCode) {
|
||||
|
||||
size_t idx = keyCode.find('K', 1);
|
||||
return keyCode.substr(idx) + keyCode.substr(0, idx);
|
||||
}
|
||||
|
||||
// Build up a fen string with the given pieces, note that the fen string
|
||||
// could be of an illegal position.
|
||||
Key buildKey(const string& keyCode) {
|
||||
|
||||
assert(keyCode.length() > 0 && keyCode.length() < 8);
|
||||
assert(keyCode[0] == 'K');
|
||||
|
||||
string fen;
|
||||
bool upcase = false;
|
||||
|
||||
for (size_t i = 0; i < keyCode.length(); i++)
|
||||
{
|
||||
if (keyCode[i] == 'K')
|
||||
upcase = !upcase;
|
||||
|
||||
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
|
||||
}
|
||||
fen += char(8 - keyCode.length() + '0');
|
||||
fen += "/8/8/8/8/8/8/8 w - -";
|
||||
return Position(fen, false, 0).get_material_key();
|
||||
}
|
||||
|
||||
typedef EndgameBase<Value> EF;
|
||||
typedef EndgameBase<ScaleFactor> SF;
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
/// Endgames member definitions
|
||||
|
||||
template<> const Endgames::EFMap& Endgames::get<EF>() const { return maps.first; }
|
||||
template<> const Endgames::SFMap& Endgames::get<SF>() const { return maps.second; }
|
||||
|
||||
Endgames::Endgames() {
|
||||
|
||||
add<Endgame<Value, KNNK> >("KNNK");
|
||||
add<Endgame<Value, KPK> >("KPK");
|
||||
add<Endgame<Value, KBNK> >("KBNK");
|
||||
add<Endgame<Value, KRKP> >("KRKP");
|
||||
add<Endgame<Value, KRKB> >("KRKB");
|
||||
add<Endgame<Value, KRKN> >("KRKN");
|
||||
add<Endgame<Value, KQKR> >("KQKR");
|
||||
add<Endgame<Value, KBBKN> >("KBBKN");
|
||||
|
||||
add<Endgame<ScaleFactor, KNPK> >("KNPK");
|
||||
add<Endgame<ScaleFactor, KRPKR> >("KRPKR");
|
||||
add<Endgame<ScaleFactor, KBPKB> >("KBPKB");
|
||||
add<Endgame<ScaleFactor, KBPPKB> >("KBPPKB");
|
||||
add<Endgame<ScaleFactor, KBPKN> >("KBPKN");
|
||||
add<Endgame<ScaleFactor, KRPPKRP> >("KRPPKRP");
|
||||
}
|
||||
|
||||
Endgames::~Endgames() {
|
||||
|
||||
for (EFMap::const_iterator it = get<EF>().begin(); it != get<EF>().end(); ++it)
|
||||
delete it->second;
|
||||
|
||||
for (SFMap::const_iterator it = get<SF>().begin(); it != get<SF>().end(); ++it)
|
||||
delete it->second;
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void Endgames::add(const string& keyCode) {
|
||||
|
||||
typedef typename T::Base F;
|
||||
typedef std::map<Key, F*> M;
|
||||
|
||||
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
|
||||
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
|
||||
}
|
||||
|
||||
template<class T>
|
||||
T* Endgames::get(Key key) const {
|
||||
|
||||
typename std::map<Key, T*>::const_iterator it = get<T>().find(key);
|
||||
return it != get<T>().end() ? it->second : NULL;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template EF* Endgames::get<EF>(Key key) const;
|
||||
template SF* Endgames::get<SF>(Key key) const;
|
||||
|
||||
|
||||
/// Mate with KX vs K. This function is used to evaluate positions with
|
||||
/// King and plenty of material vs a lone king. It simply gives the
|
||||
/// attacking side a bonus for driving the defending king towards the edge
|
||||
/// of the board, and for keeping the distance between the two kings small.
|
||||
template<>
|
||||
Value EvaluationFunction<KXK>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KXK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
|
||||
@@ -112,7 +201,7 @@ Value EvaluationFunction<KXK>::apply(const Position& pos) const {
|
||||
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
|
||||
/// defending king towards a corner square of the right color.
|
||||
template<>
|
||||
Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KBNK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
|
||||
@@ -144,7 +233,7 @@ Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
|
||||
|
||||
/// KP vs K. This endgame is evaluated with the help of a bitbase.
|
||||
template<>
|
||||
Value EvaluationFunction<KPK>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KPK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
@@ -192,7 +281,7 @@ Value EvaluationFunction<KPK>::apply(const Position& pos) const {
|
||||
/// far advanced with support of the king, while the attacking king is far
|
||||
/// away.
|
||||
template<>
|
||||
Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KRKP>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
@@ -249,7 +338,7 @@ Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
|
||||
/// KR vs KB. This is very simple, and always returns drawish scores. The
|
||||
/// score is slightly bigger when the defending king is close to the edge.
|
||||
template<>
|
||||
Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KRKB>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
@@ -265,7 +354,7 @@ Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
|
||||
/// KR vs KN. The attacking side has slightly better winning chances than
|
||||
/// in KR vs KB, particularly if the king and the knight are far apart.
|
||||
template<>
|
||||
Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KRKN>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
@@ -291,7 +380,7 @@ Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
|
||||
/// for the defending side in the search, this is usually sufficient to be
|
||||
/// able to win KQ vs KR.
|
||||
template<>
|
||||
Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KQKR>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
@@ -310,7 +399,7 @@ Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
|
||||
}
|
||||
|
||||
template<>
|
||||
Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
|
||||
Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 2);
|
||||
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
|
||||
@@ -339,12 +428,12 @@ Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
|
||||
/// K and two minors vs K and one or two minors or K and two knights against
|
||||
/// king alone are always draw.
|
||||
template<>
|
||||
Value EvaluationFunction<KmmKm>::apply(const Position&) const {
|
||||
Value Endgame<Value, KmmKm>::apply(const Position&) const {
|
||||
return VALUE_DRAW;
|
||||
}
|
||||
|
||||
template<>
|
||||
Value EvaluationFunction<KNNK>::apply(const Position&) const {
|
||||
Value Endgame<Value, KNNK>::apply(const Position&) const {
|
||||
return VALUE_DRAW;
|
||||
}
|
||||
|
||||
@@ -354,7 +443,7 @@ Value EvaluationFunction<KNNK>::apply(const Position&) const {
|
||||
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
|
||||
/// will be used.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
@@ -408,7 +497,7 @@ ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
|
||||
/// It tests for fortress draws with a rook on the third rank defended by
|
||||
/// a pawn.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KQKRPs>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, QUEEN) == 1);
|
||||
@@ -439,7 +528,7 @@ ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
|
||||
/// It would also be nice to rewrite the actual code for this function,
|
||||
/// which is mostly copied from Glaurung 1.x, and not very pretty.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 1);
|
||||
@@ -557,7 +646,7 @@ ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
|
||||
/// single pattern: If the stronger side has no pawns and the defending king
|
||||
/// is actively placed, the position is drawish.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 2);
|
||||
@@ -596,7 +685,7 @@ ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
|
||||
/// against king. There is just a single rule here: If all pawns are on
|
||||
/// the same rook file and are blocked by the defending king, it's a draw.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KPsK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.piece_count(strongerSide, PAWN) >= 2);
|
||||
@@ -634,7 +723,7 @@ ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
|
||||
/// it's a draw. If the two bishops have opposite color, it's almost always
|
||||
/// a draw.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
@@ -689,7 +778,7 @@ ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
|
||||
/// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
|
||||
/// draws with opposite-colored bishops.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
@@ -765,7 +854,7 @@ ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
|
||||
/// square of the king is not of the same color as the stronger side's bishop,
|
||||
/// it's a draw.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KBPKN>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 1);
|
||||
@@ -792,7 +881,7 @@ ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
|
||||
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
|
||||
/// the pawn from advancing, the position is drawn.
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KNPK>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
|
||||
@@ -822,7 +911,7 @@ ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
|
||||
/// advanced and not on a rook file; in this case it is often possible to win
|
||||
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
|
||||
template<>
|
||||
ScaleFactor ScalingFunction<KPKP>::apply(const Position& pos) const {
|
||||
ScaleFactor Endgame<ScaleFactor, KPKP>::apply(const Position& pos) const {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
|
||||
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
|
||||
|
||||
Reference in New Issue
Block a user