Move EndgameFunctions to endgame.cpp

And cleanup code while there.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba
2011-04-11 18:12:41 +02:00
parent 08c464c690
commit b5d5646c84
5 changed files with 201 additions and 209 deletions

View File

@@ -23,6 +23,8 @@
#include "endgame.h"
#include "pawns.h"
using std::string;
extern uint32_t probe_kpk_bitbase(Square wksq, Square wpsq, Square bksq, Color stm);
namespace {
@@ -78,15 +80,102 @@ namespace {
return Value(KRKNKingKnightDistancePenalty[d]);
}
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
const string swapColors(const string& keyCode) {
size_t idx = keyCode.find('K', 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
// Build up a fen string with the given pieces, note that the fen string
// could be of an illegal position.
Key buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode.length() < 8);
assert(keyCode[0] == 'K');
string fen;
bool upcase = false;
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
fen += char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i]));
}
fen += char(8 - keyCode.length() + '0');
fen += "/8/8/8/8/8/8/8 w - -";
return Position(fen, false, 0).get_material_key();
}
typedef EndgameBase<Value> EF;
typedef EndgameBase<ScaleFactor> SF;
} // namespace
/// Endgames member definitions
template<> const Endgames::EFMap& Endgames::get<EF>() const { return maps.first; }
template<> const Endgames::SFMap& Endgames::get<SF>() const { return maps.second; }
Endgames::Endgames() {
add<Endgame<Value, KNNK> >("KNNK");
add<Endgame<Value, KPK> >("KPK");
add<Endgame<Value, KBNK> >("KBNK");
add<Endgame<Value, KRKP> >("KRKP");
add<Endgame<Value, KRKB> >("KRKB");
add<Endgame<Value, KRKN> >("KRKN");
add<Endgame<Value, KQKR> >("KQKR");
add<Endgame<Value, KBBKN> >("KBBKN");
add<Endgame<ScaleFactor, KNPK> >("KNPK");
add<Endgame<ScaleFactor, KRPKR> >("KRPKR");
add<Endgame<ScaleFactor, KBPKB> >("KBPKB");
add<Endgame<ScaleFactor, KBPPKB> >("KBPPKB");
add<Endgame<ScaleFactor, KBPKN> >("KBPKN");
add<Endgame<ScaleFactor, KRPPKRP> >("KRPPKRP");
}
Endgames::~Endgames() {
for (EFMap::const_iterator it = get<EF>().begin(); it != get<EF>().end(); ++it)
delete it->second;
for (SFMap::const_iterator it = get<SF>().begin(); it != get<SF>().end(); ++it)
delete it->second;
}
template<class T>
void Endgames::add(const string& keyCode) {
typedef typename T::Base F;
typedef std::map<Key, F*> M;
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
const_cast<M&>(get<F>()).insert(std::pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* Endgames::get(Key key) const {
typename std::map<Key, T*>::const_iterator it = get<T>().find(key);
return it != get<T>().end() ? it->second : NULL;
}
// Explicit template instantiations
template EF* Endgames::get<EF>(Key key) const;
template SF* Endgames::get<SF>(Key key) const;
/// Mate with KX vs K. This function is used to evaluate positions with
/// King and plenty of material vs a lone king. It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.
template<>
Value EvaluationFunction<KXK>::apply(const Position& pos) const {
Value Endgame<Value, KXK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
@@ -112,7 +201,7 @@ Value EvaluationFunction<KXK>::apply(const Position& pos) const {
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color.
template<>
Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
Value Endgame<Value, KBNK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
assert(pos.piece_count(weakerSide, PAWN) == VALUE_ZERO);
@@ -144,7 +233,7 @@ Value EvaluationFunction<KBNK>::apply(const Position& pos) const {
/// KP vs K. This endgame is evaluated with the help of a bitbase.
template<>
Value EvaluationFunction<KPK>::apply(const Position& pos) const {
Value Endgame<Value, KPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);
@@ -192,7 +281,7 @@ Value EvaluationFunction<KPK>::apply(const Position& pos) const {
/// far advanced with support of the king, while the attacking king is far
/// away.
template<>
Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
Value Endgame<Value, KRKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@@ -249,7 +338,7 @@ Value EvaluationFunction<KRKP>::apply(const Position& pos) const {
/// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge.
template<>
Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
Value Endgame<Value, KRKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@@ -265,7 +354,7 @@ Value EvaluationFunction<KRKB>::apply(const Position& pos) const {
/// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.
template<>
Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
Value Endgame<Value, KRKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@@ -291,7 +380,7 @@ Value EvaluationFunction<KRKN>::apply(const Position& pos) const {
/// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR.
template<>
Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
Value Endgame<Value, KQKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@@ -310,7 +399,7 @@ Value EvaluationFunction<KQKR>::apply(const Position& pos) const {
}
template<>
Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
Value Endgame<Value, KBBKN>::apply(const Position& pos) const {
assert(pos.piece_count(strongerSide, BISHOP) == 2);
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
@@ -339,12 +428,12 @@ Value EvaluationFunction<KBBKN>::apply(const Position& pos) const {
/// K and two minors vs K and one or two minors or K and two knights against
/// king alone are always draw.
template<>
Value EvaluationFunction<KmmKm>::apply(const Position&) const {
Value Endgame<Value, KmmKm>::apply(const Position&) const {
return VALUE_DRAW;
}
template<>
Value EvaluationFunction<KNNK>::apply(const Position&) const {
Value Endgame<Value, KNNK>::apply(const Position&) const {
return VALUE_DRAW;
}
@@ -354,7 +443,7 @@ Value EvaluationFunction<KNNK>::apply(const Position&) const {
/// returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used.
template<>
ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@@ -408,7 +497,7 @@ ScaleFactor ScalingFunction<KBPsK>::apply(const Position& pos) const {
/// It tests for fortress draws with a rook on the third rank defended by
/// a pawn.
template<>
ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KQKRPs>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, QUEEN) == 1);
@@ -439,7 +528,7 @@ ScaleFactor ScalingFunction<KQKRPs>::apply(const Position& pos) const {
/// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and not very pretty.
template<>
ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KRPKR>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 1);
@@ -557,7 +646,7 @@ ScaleFactor ScalingFunction<KRPKR>::apply(const Position& pos) const {
/// single pattern: If the stronger side has no pawns and the defending king
/// is actively placed, the position is drawish.
template<>
ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KRPPKRP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 2);
@@ -596,7 +685,7 @@ ScaleFactor ScalingFunction<KRPPKRP>::apply(const Position& pos) const {
/// against king. There is just a single rule here: If all pawns are on
/// the same rook file and are blocked by the defending king, it's a draw.
template<>
ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KPsK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.piece_count(strongerSide, PAWN) >= 2);
@@ -634,7 +723,7 @@ ScaleFactor ScalingFunction<KPsK>::apply(const Position& pos) const {
/// it's a draw. If the two bishops have opposite color, it's almost always
/// a draw.
template<>
ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@@ -689,7 +778,7 @@ ScaleFactor ScalingFunction<KBPKB>::apply(const Position& pos) const {
/// KBPPKBScalingFunction scales KBPP vs KB endgames. It detects a few basic
/// draws with opposite-colored bishops.
template<>
ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPPKB>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@@ -765,7 +854,7 @@ ScaleFactor ScalingFunction<KBPPKB>::apply(const Position& pos) const {
/// square of the king is not of the same color as the stronger side's bishop,
/// it's a draw.
template<>
ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KBPKN>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
assert(pos.piece_count(strongerSide, BISHOP) == 1);
@@ -792,7 +881,7 @@ ScaleFactor ScalingFunction<KBPKN>::apply(const Position& pos) const {
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
/// the pawn from advancing, the position is drawn.
template<>
ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KNPK>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
assert(pos.piece_count(strongerSide, KNIGHT) == 1);
@@ -822,7 +911,7 @@ ScaleFactor ScalingFunction<KNPK>::apply(const Position& pos) const {
/// advanced and not on a rook file; in this case it is often possible to win
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
template<>
ScaleFactor ScalingFunction<KPKP>::apply(const Position& pos) const {
ScaleFactor Endgame<ScaleFactor, KPKP>::apply(const Position& pos) const {
assert(pos.non_pawn_material(strongerSide) == VALUE_ZERO);
assert(pos.non_pawn_material(weakerSide) == VALUE_ZERO);