Optimize trainer clipped relu backpropagate.

This commit is contained in:
Tomasz Sobczyk
2020-10-28 15:03:09 +01:00
committed by nodchip
parent c96743c5bd
commit 941897ff2c

View File

@@ -69,6 +69,55 @@ namespace Eval::NNUE {
const LearnFloatType* gradients,
LearnFloatType learning_rate) {
#if defined (USE_SSE2)
{
static_assert(kOutputDimensions % 16 == 0, "This implementation assumes that it can process 16 floats at a time");
const __m128 kZero4 = _mm_set1_ps(+kZero);
const __m128 kOne4 = _mm_set1_ps(+kOne);
const IndexType total_size = batch_size_ * kOutputDimensions;
for (IndexType i = 0; i < total_size; i += 16)
{
__m128 out0 = _mm_loadu_ps(&output_[i + 0]);
__m128 out1 = _mm_loadu_ps(&output_[i + 4]);
__m128 out2 = _mm_loadu_ps(&output_[i + 8]);
__m128 out3 = _mm_loadu_ps(&output_[i + 12]);
__m128 clipped0 = _mm_or_ps(_mm_cmple_ps(out0, kZero4), _mm_cmpge_ps(out0, kOne4));
__m128 clipped1 = _mm_or_ps(_mm_cmple_ps(out1, kZero4), _mm_cmpge_ps(out1, kOne4));
__m128 clipped2 = _mm_or_ps(_mm_cmple_ps(out2, kZero4), _mm_cmpge_ps(out2, kOne4));
__m128 clipped3 = _mm_or_ps(_mm_cmple_ps(out3, kZero4), _mm_cmpge_ps(out3, kOne4));
__m128 grad0 = _mm_loadu_ps(&gradients[i + 0]);
__m128 grad1 = _mm_loadu_ps(&gradients[i + 4]);
__m128 grad2 = _mm_loadu_ps(&gradients[i + 8]);
__m128 grad3 = _mm_loadu_ps(&gradients[i + 12]);
grad0 = _mm_andnot_ps(clipped0, grad0);
grad1 = _mm_andnot_ps(clipped1, grad1);
grad2 = _mm_andnot_ps(clipped2, grad2);
grad3 = _mm_andnot_ps(clipped3, grad3);
_mm_storeu_ps(&gradients_[i + 0], grad0);
_mm_storeu_ps(&gradients_[i + 4], grad1);
_mm_storeu_ps(&gradients_[i + 8], grad2);
_mm_storeu_ps(&gradients_[i + 12], grad3);
const int clipped_mask =
(_mm_movemask_ps(clipped0) << 0)
| (_mm_movemask_ps(clipped1) << 4)
| (_mm_movemask_ps(clipped2) << 8)
| (_mm_movemask_ps(clipped3) << 12);
num_clipped_ += popcount(clipped_mask);
}
}
#else
for (IndexType b = 0; b < batch_size_; ++b) {
const IndexType batch_offset = kOutputDimensions * b;
for (IndexType i = 0; i < kOutputDimensions; ++i) {
@@ -78,6 +127,9 @@ namespace Eval::NNUE {
num_clipped_ += clipped;
}
}
#endif
num_total_ += batch_size_ * kOutputDimensions;
previous_layer_trainer_->backpropagate(thread_pool, gradients_.data(), learning_rate);