Micro-optimize get_material_info()

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba
2009-11-15 09:35:22 +01:00
parent 4c58db0dab
commit 89fe8bc0a6

View File

@@ -44,7 +44,8 @@ namespace {
// Polynomial material balance parameters // Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(320); const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554); const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][6] = { const int QuadraticCoefficientsSameColor[][6] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 }, { 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
@@ -133,7 +134,7 @@ MaterialInfoTable::~MaterialInfoTable() {
} }
/// MaterialInfoTable::game_phase() calculate the phase given the current /// MaterialInfoTable::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it /// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialInfo. /// is stored in MaterialInfo.
@@ -171,7 +172,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
mi->clear(); mi->clear();
mi->key = key; mi->key = key;
// Calculate game phase // Store game phase
mi->gamePhase = MaterialInfoTable::game_phase(pos); mi->gamePhase = MaterialInfoTable::game_phase(pos);
// Let's look if we have a specialized evaluation function for this // Let's look if we have a specialized evaluation function for this
@@ -292,8 +293,8 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT), { pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } }; pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
Color c, them; Color c, them;
int sign; int sign, pt1, pt2, pc;
int matValue = 0; int v, vv, matValue = 0;
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
{ {
@@ -327,25 +328,27 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty); matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty);
them = opposite_color(c); them = opposite_color(c);
v = 0;
// Second-degree polynomial material imbalance by Tord Romstad // Second-degree polynomial material imbalance by Tord Romstad
// //
// We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece", // We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece",
// this allow us to be more flexible in defining bishop pair bonuses. // this allow us to be more flexible in defining bishop pair bonuses.
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++) for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{ {
int c1 = sign * pieceCount[c][pt1]; pc = pieceCount[c][pt1];
if (!c1) if (!pc)
continue; continue;
matValue += c1 * LinearCoefficients[pt1]; vv = LinearCoefficients[pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++) for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
{ vv += pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2]
matValue += c1 * pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2]; + pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
matValue += c1 * pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
} v += pc * vv;
} }
matValue += sign * v;
} }
mi->value = int16_t(matValue / 16); mi->value = int16_t(matValue / 16);
return mi; return mi;