Futher renaming in thread.cpp

No functional change.
This commit is contained in:
Marco Costalba
2013-01-20 11:54:30 +01:00
parent 588670e8d2
commit 62b32a4737
3 changed files with 70 additions and 69 deletions

View File

@@ -45,8 +45,8 @@ namespace { extern "C" {
Thread::Thread() : splitPoints() {
searching = exit = false;
maxPly = splitPointsCnt = 0;
curSplitPoint = NULL;
maxPly = splitPointsSize = 0;
activeSplitPoint = NULL;
idx = Threads.size();
if (!thread_create(handle, start_routine, this))
@@ -146,7 +146,7 @@ void Thread::wait_for(volatile const bool& b) {
bool Thread::cutoff_occurred() const {
for (SplitPoint* sp = curSplitPoint; sp; sp = sp->parent)
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parent)
if (sp->cutoff)
return true;
@@ -157,9 +157,9 @@ bool Thread::cutoff_occurred() const {
// Thread::is_available_to() checks whether the thread is available to help the
// thread 'master' at a split point. An obvious requirement is that thread must
// be idle. With more than two threads, this is not sufficient: If the thread is
// the master of some active split point, it is only available as a slave to the
// slaves which are busy searching the split point at the top of slaves split
// point stack (the "helpful master concept" in YBWC terminology).
// the master of some split point, it is only available as a slave to the slaves
// which are busy searching the split point at the top of slaves split point
// stack (the "helpful master concept" in YBWC terminology).
bool Thread::is_available_to(Thread* master) const {
@@ -168,11 +168,11 @@ bool Thread::is_available_to(Thread* master) const {
// Make a local copy to be sure doesn't become zero under our feet while
// testing next condition and so leading to an out of bound access.
int spCnt = splitPointsCnt;
int size = splitPointsSize;
// No active split points means that the thread is available as a slave for any
// No split points means that the thread is available as a slave for any
// other thread otherwise apply the "helpful master" concept if possible.
return !spCnt || (splitPoints[spCnt - 1].slavesMask & (1ULL << master->idx));
return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx));
}
@@ -225,10 +225,10 @@ void ThreadPool::read_uci_options() {
}
// available_slave_exists() tries to find an idle thread which is available as
// a slave for the thread 'master'.
// slave_available() tries to find an idle thread which is available as a slave
// for the thread 'master'.
bool ThreadPool::available_slave_exists(Thread* master) const {
bool ThreadPool::slave_available(Thread* master) const {
for (size_t i = 0; i < threads.size(); i++)
if (threads[i]->is_available_to(master))
@@ -261,15 +261,14 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
Thread* master = pos.this_thread();
if (master->splitPointsCnt >= MAX_SPLITPOINTS_PER_THREAD)
if (master->splitPointsSize >= MAX_SPLITPOINTS_PER_THREAD)
return bestValue;
// Pick the next available split point from the split point stack
SplitPoint& sp = master->splitPoints[master->splitPointsCnt];
SplitPoint& sp = master->splitPoints[master->splitPointsSize];
sp.parent = master->curSplitPoint;
sp.master = master;
sp.cutoff = false;
sp.parent = master->activeSplitPoint;
sp.slavesMask = 1ULL << master->idx;
sp.depth = depth;
sp.bestMove = *bestMove;
@@ -282,15 +281,16 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
sp.moveCount = moveCount;
sp.pos = &pos;
sp.nodes = 0;
sp.cutoff = false;
sp.ss = ss;
master->activeSplitPoint = &sp;
int slavesCnt = 0;
assert(master->searching);
master->curSplitPoint = &sp;
int slavesCnt = 0;
// Try to allocate available threads and ask them to start searching setting
// is_searching flag. This must be done under lock protection to avoid concurrent
// 'searching' flag. This must be done under lock protection to avoid concurrent
// allocation of the same slave by another master.
mutex.lock();
sp.mutex.lock();
@@ -299,21 +299,21 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
if (threads[i]->is_available_to(master))
{
sp.slavesMask |= 1ULL << i;
threads[i]->curSplitPoint = &sp;
threads[i]->activeSplitPoint = &sp;
threads[i]->searching = true; // Slave leaves idle_loop()
threads[i]->notify_one(); // Could be sleeping
if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included
if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Include master
break;
}
master->splitPointsCnt++;
master->splitPointsSize++;
sp.mutex.unlock();
mutex.unlock();
// Everything is set up. The master thread enters the idle loop, from which
// it will instantly launch a search, because its is_searching flag is set.
// it will instantly launch a search, because its 'searching' flag is set.
// The thread will return from the idle loop when all slaves have finished
// their work at this split point.
if (slavesCnt || Fake)
@@ -326,14 +326,14 @@ Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
}
// We have returned from the idle loop, which means that all threads are
// finished. Note that setting is_searching and decreasing splitPointsCnt is
// finished. Note that setting 'searching' and decreasing splitPointsSize is
// done under lock protection to avoid a race with Thread::is_available_to().
mutex.lock();
sp.mutex.lock();
master->searching = true;
master->splitPointsCnt--;
master->curSplitPoint = sp.parent;
master->splitPointsSize--;
master->activeSplitPoint = sp.parent;
pos.set_nodes_searched(pos.nodes_searched() + sp.nodes);
*bestMove = sp.bestMove;