mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-24 11:06:58 +08:00
Introduce notation.h
And group there all the formatting functions but uci_pv() that requires access to search.cpp variables. No functional change. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
190
src/search.cpp
190
src/search.cpp
@@ -21,7 +21,6 @@
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@@ -30,6 +29,7 @@
|
||||
#include "history.h"
|
||||
#include "movegen.h"
|
||||
#include "movepick.h"
|
||||
#include "notation.h"
|
||||
#include "search.h"
|
||||
#include "timeman.h"
|
||||
#include "thread.h"
|
||||
@@ -144,8 +144,6 @@ namespace {
|
||||
bool connected_threat(const Position& pos, Move m, Move threat);
|
||||
Value refine_eval(const TTEntry* tte, Value ttValue, Value defaultEval);
|
||||
Move do_skill_level();
|
||||
string score_to_uci(Value v, Value alpha = -VALUE_INFINITE, Value beta = VALUE_INFINITE);
|
||||
string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]);
|
||||
string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
|
||||
|
||||
// MovePickerExt class template extends MovePicker and allows to choose at
|
||||
@@ -1512,25 +1510,48 @@ split_point_start: // At split points actual search starts from here
|
||||
}
|
||||
|
||||
|
||||
// score_to_uci() converts a value to a string suitable for use with the UCI
|
||||
// protocol specifications:
|
||||
//
|
||||
// cp <x> The score from the engine's point of view in centipawns.
|
||||
// mate <y> Mate in y moves, not plies. If the engine is getting mated
|
||||
// use negative values for y.
|
||||
// When playing with strength handicap choose best move among the MultiPV set
|
||||
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
|
||||
|
||||
string score_to_uci(Value v, Value alpha, Value beta) {
|
||||
Move do_skill_level() {
|
||||
|
||||
std::stringstream s;
|
||||
assert(MultiPV > 1);
|
||||
|
||||
if (abs(v) < VALUE_MATE_IN_MAX_PLY)
|
||||
s << "cp " << v * 100 / int(PawnValueMidgame);
|
||||
else
|
||||
s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
|
||||
static RKISS rk;
|
||||
|
||||
s << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
|
||||
// PRNG sequence should be not deterministic
|
||||
for (int i = Time::current_time().msec() % 50; i > 0; i--)
|
||||
rk.rand<unsigned>();
|
||||
|
||||
return s.str();
|
||||
// RootMoves are already sorted by score in descending order
|
||||
size_t size = std::min(MultiPV, RootMoves.size());
|
||||
int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMidgame);
|
||||
int weakness = 120 - 2 * SkillLevel;
|
||||
int max_s = -VALUE_INFINITE;
|
||||
Move best = MOVE_NONE;
|
||||
|
||||
// Choose best move. For each move score we add two terms both dependent on
|
||||
// weakness, one deterministic and bigger for weaker moves, and one random,
|
||||
// then we choose the move with the resulting highest score.
|
||||
for (size_t i = 0; i < size; i++)
|
||||
{
|
||||
int s = RootMoves[i].score;
|
||||
|
||||
// Don't allow crazy blunders even at very low skills
|
||||
if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
|
||||
break;
|
||||
|
||||
// This is our magic formula
|
||||
s += ( weakness * int(RootMoves[0].score - s)
|
||||
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
|
||||
|
||||
if (s > max_s)
|
||||
{
|
||||
max_s = s;
|
||||
best = RootMoves[i].pv[0];
|
||||
}
|
||||
}
|
||||
return best;
|
||||
}
|
||||
|
||||
|
||||
@@ -1577,141 +1598,6 @@ split_point_start: // At split points actual search starts from here
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
// pretty_pv() formats human-readable search information, typically to be
|
||||
// appended to the search log file. It uses the two helpers below to pretty
|
||||
// format time and score respectively.
|
||||
|
||||
string time_to_string(int millisecs) {
|
||||
|
||||
const int MSecMinute = 1000 * 60;
|
||||
const int MSecHour = 1000 * 60 * 60;
|
||||
|
||||
int hours = millisecs / MSecHour;
|
||||
int minutes = (millisecs % MSecHour) / MSecMinute;
|
||||
int seconds = ((millisecs % MSecHour) % MSecMinute) / 1000;
|
||||
|
||||
std::stringstream s;
|
||||
|
||||
if (hours)
|
||||
s << hours << ':';
|
||||
|
||||
s << std::setfill('0') << std::setw(2) << minutes << ':'
|
||||
<< std::setw(2) << seconds;
|
||||
return s.str();
|
||||
}
|
||||
|
||||
string score_to_string(Value v) {
|
||||
|
||||
std::stringstream s;
|
||||
|
||||
if (v >= VALUE_MATE_IN_MAX_PLY)
|
||||
s << "#" << (VALUE_MATE - v + 1) / 2;
|
||||
|
||||
else if (v <= VALUE_MATED_IN_MAX_PLY)
|
||||
s << "-#" << (VALUE_MATE + v) / 2;
|
||||
|
||||
else
|
||||
s << std::setprecision(2) << std::fixed << std::showpos
|
||||
<< float(v) / PawnValueMidgame;
|
||||
|
||||
return s.str();
|
||||
}
|
||||
|
||||
string pretty_pv(Position& pos, int depth, Value value, int time, Move pv[]) {
|
||||
|
||||
const int64_t K = 1000;
|
||||
const int64_t M = 1000000;
|
||||
|
||||
StateInfo state[MAX_PLY_PLUS_2], *st = state;
|
||||
Move* m = pv;
|
||||
string san, padding;
|
||||
size_t length;
|
||||
std::stringstream s;
|
||||
|
||||
s << std::setw(2) << depth
|
||||
<< std::setw(8) << score_to_string(value)
|
||||
<< std::setw(8) << time_to_string(time);
|
||||
|
||||
if (pos.nodes_searched() < M)
|
||||
s << std::setw(8) << pos.nodes_searched() / 1 << " ";
|
||||
|
||||
else if (pos.nodes_searched() < K * M)
|
||||
s << std::setw(7) << pos.nodes_searched() / K << "K ";
|
||||
|
||||
else
|
||||
s << std::setw(7) << pos.nodes_searched() / M << "M ";
|
||||
|
||||
padding = string(s.str().length(), ' ');
|
||||
length = padding.length();
|
||||
|
||||
while (*m != MOVE_NONE)
|
||||
{
|
||||
san = move_to_san(pos, *m);
|
||||
|
||||
if (length + san.length() > 80)
|
||||
{
|
||||
s << "\n" + padding;
|
||||
length = padding.length();
|
||||
}
|
||||
|
||||
s << san << ' ';
|
||||
length += san.length() + 1;
|
||||
|
||||
pos.do_move(*m++, *st++);
|
||||
}
|
||||
|
||||
while (m != pv)
|
||||
pos.undo_move(*--m);
|
||||
|
||||
return s.str();
|
||||
}
|
||||
|
||||
|
||||
// When playing with strength handicap choose best move among the MultiPV set
|
||||
// using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
|
||||
|
||||
Move do_skill_level() {
|
||||
|
||||
assert(MultiPV > 1);
|
||||
|
||||
static RKISS rk;
|
||||
|
||||
// PRNG sequence should be not deterministic
|
||||
for (int i = Time::current_time().msec() % 50; i > 0; i--)
|
||||
rk.rand<unsigned>();
|
||||
|
||||
// RootMoves are already sorted by score in descending order
|
||||
size_t size = std::min(MultiPV, RootMoves.size());
|
||||
int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMidgame);
|
||||
int weakness = 120 - 2 * SkillLevel;
|
||||
int max_s = -VALUE_INFINITE;
|
||||
Move best = MOVE_NONE;
|
||||
|
||||
// Choose best move. For each move score we add two terms both dependent on
|
||||
// weakness, one deterministic and bigger for weaker moves, and one random,
|
||||
// then we choose the move with the resulting highest score.
|
||||
for (size_t i = 0; i < size; i++)
|
||||
{
|
||||
int s = RootMoves[i].score;
|
||||
|
||||
// Don't allow crazy blunders even at very low skills
|
||||
if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin)
|
||||
break;
|
||||
|
||||
// This is our magic formula
|
||||
s += ( weakness * int(RootMoves[0].score - s)
|
||||
+ variance * (rk.rand<unsigned>() % weakness)) / 128;
|
||||
|
||||
if (s > max_s)
|
||||
{
|
||||
max_s = s;
|
||||
best = RootMoves[i].pv[0];
|
||||
}
|
||||
}
|
||||
return best;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user