Retire one implementation of pop_lsb()

We have two implementations that are equivalent,
so retire one.

Plus usual tidy up of comments and code reshuffle.

No functional change.
This commit is contained in:
Marco Costalba
2015-01-03 16:39:17 +01:00
parent a6e292034a
commit 3fda064a66
6 changed files with 130 additions and 131 deletions

View File

@@ -25,6 +25,13 @@
#include "types.h"
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
}
namespace Bitboards {
void init();
@@ -32,12 +39,7 @@ const std::string pretty(Bitboard b);
}
namespace Bitbases {
void init_kpk();
bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us);
}
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
const Bitboard FileABB = 0x0101010101010101ULL;
const Bitboard FileBBB = FileABB << 1;
@@ -57,15 +59,17 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5);
const Bitboard Rank7BB = Rank1BB << (8 * 6);
const Bitboard Rank8BB = Rank1BB << (8 * 7);
extern Bitboard RookMasks[SQUARE_NB];
extern Bitboard RookMagics[SQUARE_NB];
extern Bitboard* RookAttacks[SQUARE_NB];
extern unsigned RookShifts[SQUARE_NB];
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard BishopMasks[SQUARE_NB];
extern Bitboard BishopMagics[SQUARE_NB];
extern Bitboard RookMasks [SQUARE_NB];
extern Bitboard RookMagics [SQUARE_NB];
extern Bitboard* RookAttacks[SQUARE_NB];
extern unsigned RookShifts [SQUARE_NB];
extern Bitboard BishopMasks [SQUARE_NB];
extern Bitboard BishopMagics [SQUARE_NB];
extern Bitboard* BishopAttacks[SQUARE_NB];
extern unsigned BishopShifts[SQUARE_NB];
extern unsigned BishopShifts [SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard FileBB[FILE_NB];
@@ -75,15 +79,12 @@ extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard DistanceRingsBB[SQUARE_NB][8];
extern Bitboard DistanceRingBB[SQUARE_NB][8];
extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
/// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
@@ -92,14 +93,6 @@ inline Bitboard operator&(Bitboard b, Square s) {
return b & SquareBB[s];
}
inline Bitboard& operator|=(Bitboard& b, Square s) {
return b |= SquareBB[s];
}
inline Bitboard& operator^=(Bitboard& b, Square s) {
return b ^= SquareBB[s];
}
inline Bitboard operator|(Bitboard b, Square s) {
return b | SquareBB[s];
}
@@ -108,32 +101,21 @@ inline Bitboard operator^(Bitboard b, Square s) {
return b ^ SquareBB[s];
}
inline Bitboard& operator|=(Bitboard& b, Square s) {
return b |= SquareBB[s];
}
inline Bitboard& operator^=(Bitboard& b, Square s) {
return b ^= SquareBB[s];
}
inline bool more_than_one(Bitboard b) {
return b & (b - 1);
}
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns.
template<Square Delta>
inline Bitboard shift_bb(Bitboard b) {
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
: 0;
}
/// rank_bb() and file_bb() take a file or a square as input and return
/// a bitboard representing all squares on the given file or rank.
/// rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank.
inline Bitboard rank_bb(Rank r) {
return RankBB[r];
@@ -152,83 +134,102 @@ inline Bitboard file_bb(Square s) {
}
/// adjacent_files_bb() takes a file as input and returns a bitboard representing
/// all squares on the adjacent files.
/// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns
template<Square Delta>
inline Bitboard shift_bb(Bitboard b) {
return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8
: Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
: Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
: 0;
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of the given one.
inline Bitboard adjacent_files_bb(File f) {
return AdjacentFilesBB[f];
}
/// in_front_bb() takes a color and a rank as input, and returns a bitboard
/// representing all the squares on all ranks in front of the rank, from the
/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will
/// give all squares on ranks 1 and 2.
inline Bitboard in_front_bb(Color c, Rank r) {
return InFrontBB[c][r];
}
/// between_bb() returns a bitboard representing all squares between two squares.
/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for
/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal,
/// 0 is returned.
/// between_bb() returns a bitboard representing all the squares between the two
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
/// or diagonal, 0 is returned.
inline Bitboard between_bb(Square s1, Square s2) {
return BetweenBB[s1][s2];
}
/// forward_bb() takes a color and a square as input, and returns a bitboard
/// representing all squares along the line in front of the square, from the
/// point of view of the given color. Definition of the table is:
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
/// in_front_bb() returns a bitboard representing all the squares on all the ranks
/// in front of the given one, from the point of view of the given color. For
/// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
inline Bitboard in_front_bb(Color c, Rank r) {
return InFrontBB[c][r];
}
/// forward_bb() returns a bitboard representing all the squares along the line
/// in front of the given one, from the point of view of the given color:
/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
inline Bitboard forward_bb(Color c, Square s) {
return ForwardBB[c][s];
}
/// pawn_attack_span() takes a color and a square as input, and returns a bitboard
/// representing all squares that can be attacked by a pawn of the given color
/// when it moves along its file starting from the given square. Definition is:
/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
/// pawn_attack_span() returns a bitboard representing all the squares that can be
/// attacked by a pawn of the given color when it moves along its file, starting
/// from the given square:
/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
inline Bitboard pawn_attack_span(Color c, Square s) {
return PawnAttackSpan[c][s];
}
/// passed_pawn_mask() takes a color and a square as input, and returns a
/// bitboard mask which can be used to test if a pawn of the given color on
/// the given square is a passed pawn. Definition of the table is:
/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
/// pawn of the given color and on the given square is a passed pawn:
/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
inline Bitboard passed_pawn_mask(Color c, Square s) {
return PassedPawnMask[c][s];
}
/// squares_of_color() returns a bitboard representing all squares with the same
/// color of the given square.
/// squares_of_color() returns a bitboard representing all the squares of the
/// same color of the given one.
inline Bitboard squares_of_color(Square s) {
return DarkSquares & s ? DarkSquares : ~DarkSquares;
}
/// aligned() returns true if the squares s1, s2 and s3 are aligned
/// either on a straight or on a diagonal line.
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return LineBB[s1][s2] & s3;
}
/// Functions for computing sliding attack bitboards. Function attacks_bb() takes
/// a square and a bitboard of occupied squares as input, and returns a bitboard
/// representing all squares attacked by Pt (bishop or rook) on the given square.
/// distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
/// attacks_bb() returns a bitboard representing all the squares attacked by a
/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
/// looks up the index using the 'magic bitboards' approach.
template<PieceType Pt>
FORCE_INLINE unsigned magic_index(Square s, Bitboard occupied) {
@@ -263,8 +264,8 @@ inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
}
}
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard.
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#ifdef USE_BSFQ
@@ -297,7 +298,7 @@ FORCE_INLINE Square lsb(Bitboard b) {
return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32)));
}
# else
# else // Assumed gcc or compatible compiler
FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen
Bitboard idx;
@@ -313,21 +314,24 @@ FORCE_INLINE Square msb(Bitboard b) {
# endif
#else // ifdef(USE_BSFQ)
Square lsb(Bitboard b);
Square msb(Bitboard b);
#endif
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
FORCE_INLINE Square pop_lsb(Bitboard* b) {
const Square s = lsb(*b);
*b &= *b - 1;
return s;
}
#else // if defined(USE_BSFQ)
extern Square msb(Bitboard b);
extern Square lsb(Bitboard b);
extern Square pop_lsb(Bitboard* b);
#endif
/// frontmost_sq() and backmost_sq() find the square corresponding to the
/// frontmost_sq() and backmost_sq() return the square corresponding to the
/// most/least advanced bit relative to the given color.
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }