Revert evaluation cache

And return on using TT as backing store for position
evaluations.

Tests (even on single thread) show eval cache was a regression.
In multi thread result should be even worst because eval cache
is a per-thread struct, while TT is shared.

After 4957 games at 15"+0.05 (single thread)
eval cache vs master 969 - 1093 - 2895  -9 ELO

So previous reported result of +18 ELO was probably due to an
issue in the testing framework (a bug in cutechess-cli) that
has been fixed in the meanwhile.

bench: 5386711
This commit is contained in:
Marco Costalba
2012-12-27 12:13:31 +01:00
parent f78b68b7ff
commit 3cf6471738
6 changed files with 61 additions and 57 deletions

View File

@@ -244,7 +244,7 @@ namespace {
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility);
template<Color Us, bool Trace>
Score evaluate_king(const Position& pos, EvalInfo& ei, int16_t margins[]);
Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]);
template<Color Us>
Score evaluate_threats(const Position& pos, EvalInfo& ei);
@@ -364,27 +364,13 @@ Value do_evaluate(const Position& pos, Value& margin) {
assert(!pos.checkers());
EvalInfo ei;
Value margins[COLOR_NB];
Score score, mobilityWhite, mobilityBlack;
Key key = pos.key();
Thread* th = pos.this_thread();
Eval::Entry* e = th->evalTable[key];
// If e->key matches the position's hash key, it means that we have analysed
// this node before, and we can simply return the information we found the last
// time instead of recomputing it.
if (e->key == key)
{
margin = Value(e->margins[pos.side_to_move()]);
return e->value;
}
// Otherwise we overwrite current content with this node info.
e->key = key;
// margins[] store the uncertainty estimation of position's evaluation
// that typically is used by the search for pruning decisions.
e->margins[WHITE] = e->margins[BLACK] = VALUE_ZERO;
margins[WHITE] = margins[BLACK] = VALUE_ZERO;
// Initialize score by reading the incrementally updated scores included
// in the position object (material + piece square tables) and adding
@@ -400,8 +386,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
if (ei.mi->specialized_eval_exists())
{
margin = VALUE_ZERO;
e->value = ei.mi->evaluate(pos);
return e->value;
return ei.mi->evaluate(pos);
}
// Probe the pawn hash table
@@ -420,8 +405,8 @@ Value do_evaluate(const Position& pos, Value& margin) {
// Evaluate kings after all other pieces because we need complete attack
// information when computing the king safety evaluation.
score += evaluate_king<WHITE, Trace>(pos, ei, e->margins)
- evaluate_king<BLACK, Trace>(pos, ei, e->margins);
score += evaluate_king<WHITE, Trace>(pos, ei, margins)
- evaluate_king<BLACK, Trace>(pos, ei, margins);
// Evaluate tactical threats, we need full attack information including king
score += evaluate_threats<WHITE>(pos, ei)
@@ -467,7 +452,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
sf = ScaleFactor(50);
}
margin = Value(e->margins[pos.side_to_move()]);
margin = margins[pos.side_to_move()];
Value v = interpolate(score, ei.mi->game_phase(), sf);
// In case of tracing add all single evaluation contributions for both white and black
@@ -484,8 +469,8 @@ Value do_evaluate(const Position& pos, Value& margin) {
Score b = make_score(ei.mi->space_weight() * evaluate_space<BLACK>(pos, ei), 0);
trace_add(SPACE, apply_weight(w, Weights[Space]), apply_weight(b, Weights[Space]));
trace_add(TOTAL, score);
TraceStream << "\nUncertainty margin: White: " << to_cp(Value(e->margins[WHITE]))
<< ", Black: " << to_cp(Value(e->margins[BLACK]))
TraceStream << "\nUncertainty margin: White: " << to_cp(margins[WHITE])
<< ", Black: " << to_cp(margins[BLACK])
<< "\nScaling: " << std::noshowpos
<< std::setw(6) << 100.0 * ei.mi->game_phase() / 128.0 << "% MG, "
<< std::setw(6) << 100.0 * (1.0 - ei.mi->game_phase() / 128.0) << "% * "
@@ -493,7 +478,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
<< "Total evaluation: " << to_cp(v);
}
return e->value = pos.side_to_move() == WHITE ? v : -v;
return pos.side_to_move() == WHITE ? v : -v;
}
@@ -768,7 +753,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
// evaluate_king<>() assigns bonuses and penalties to a king of a given color
template<Color Us, bool Trace>
Score evaluate_king(const Position& pos, EvalInfo& ei, int16_t margins[]) {
Score evaluate_king(const Position& pos, EvalInfo& ei, Value margins[]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
@@ -868,7 +853,7 @@ Value do_evaluate(const Position& pos, Value& margin) {
// be very big, and so capturing a single attacking piece can therefore
// result in a score change far bigger than the value of the captured piece.
score -= KingDangerTable[Us == Search::RootColor][attackUnits];
margins[Us] += int16_t(mg_value(KingDangerTable[Us == Search::RootColor][attackUnits]));
margins[Us] += mg_value(KingDangerTable[Us == Search::RootColor][attackUnits]);
}
if (Trace)