mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-19 08:36:33 +08:00
Use std::vector to implement HashTable
Allows some code semplification and avoids directly allocation and managing heap memory. Also the usual renaming while there. No functional change and no speed regression. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
@@ -17,9 +17,9 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#include "material.h"
|
||||
|
||||
@@ -89,38 +89,38 @@ namespace {
|
||||
/// already present in the table, it is computed and stored there, so we don't
|
||||
/// have to recompute everything when the same material configuration occurs again.
|
||||
|
||||
MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
|
||||
Key key = pos.material_key();
|
||||
MaterialEntry* mi = Base::probe(key);
|
||||
MaterialEntry* e = entries[key];
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
// If e->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
// return the information we found the last time instead of recomputing it.
|
||||
if (mi->key == key)
|
||||
return mi;
|
||||
if (e->key == key)
|
||||
return e;
|
||||
|
||||
memset(mi, 0, sizeof(MaterialEntry));
|
||||
mi->key = key;
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
mi->gamePhase = MaterialTable::game_phase(pos);
|
||||
memset(e, 0, sizeof(MaterialEntry));
|
||||
e->key = key;
|
||||
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
e->gamePhase = MaterialTable::game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
// configuration one, then a generic one if previous search failed.
|
||||
if ((mi->evaluationFunction = funcs->get<Value>(key)) != NULL)
|
||||
return mi;
|
||||
if ((e->evaluationFunction = endgames.probe<Value>(key)) != NULL)
|
||||
return e;
|
||||
|
||||
if (is_KXK<WHITE>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return e;
|
||||
}
|
||||
|
||||
if (is_KXK<BLACK>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return e;
|
||||
}
|
||||
|
||||
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
|
||||
@@ -133,8 +133,8 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
||||
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return e;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -145,26 +145,26 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
// scaling functions and we need to decide which one to use.
|
||||
EndgameBase<ScaleFactor>* sf;
|
||||
|
||||
if ((sf = funcs->get<ScaleFactor>(key)) != NULL)
|
||||
if ((sf = endgames.probe<ScaleFactor>(key)) != NULL)
|
||||
{
|
||||
mi->scalingFunction[sf->color()] = sf;
|
||||
return mi;
|
||||
e->scalingFunction[sf->color()] = sf;
|
||||
return e;
|
||||
}
|
||||
|
||||
// Generic scaling functions that refer to more then one material
|
||||
// distribution. Should be probed after the specialized ones.
|
||||
// Note that these ones don't return after setting the function.
|
||||
if (is_KBPsKs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
|
||||
if (is_KBPsKs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
|
||||
if (is_KQKRPs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
||||
|
||||
else if (is_KQKRPs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
||||
|
||||
Value npm_w = pos.non_pawn_material(WHITE);
|
||||
Value npm_b = pos.non_pawn_material(BLACK);
|
||||
@@ -174,32 +174,32 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
if (pos.piece_count(BLACK, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
||||
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
||||
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
||||
{
|
||||
// This is a special case because we set scaling functions
|
||||
// for both colors instead of only one.
|
||||
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
||||
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
||||
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
||||
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
||||
}
|
||||
}
|
||||
|
||||
// No pawns makes it difficult to win, even with a material advantage
|
||||
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[WHITE] = (uint8_t)
|
||||
e->factor[WHITE] = (uint8_t)
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[BLACK] = (uint8_t)
|
||||
e->factor[BLACK] = (uint8_t)
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
@@ -209,7 +209,7 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
|
||||
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
|
||||
|
||||
mi->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
e->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
}
|
||||
|
||||
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
||||
@@ -221,8 +221,8 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
|
||||
mi->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
||||
return mi;
|
||||
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
||||
return e;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user