Use std::vector to implement HashTable

Allows some code semplification and avoids directly
allocation and managing heap memory.

Also the usual renaming while there.

No functional change and no speed regression.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba
2012-03-31 12:15:57 +01:00
parent 304deb5e83
commit 32c504076f
9 changed files with 83 additions and 110 deletions

View File

@@ -17,9 +17,9 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cstring>
#include <algorithm>
#include "material.h"
@@ -89,38 +89,38 @@ namespace {
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
MaterialEntry* MaterialTable::probe(const Position& pos) const {
MaterialEntry* MaterialTable::probe(const Position& pos) {
Key key = pos.material_key();
MaterialEntry* mi = Base::probe(key);
MaterialEntry* e = entries[key];
// If mi->key matches the position's material hash key, it means that we
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
if (e->key == key)
return e;
memset(mi, 0, sizeof(MaterialEntry));
mi->key = key;
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
mi->gamePhase = MaterialTable::game_phase(pos);
memset(e, 0, sizeof(MaterialEntry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
e->gamePhase = MaterialTable::game_phase(pos);
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<Value>(key)) != NULL)
return mi;
if ((e->evaluationFunction = endgames.probe<Value>(key)) != NULL)
return e;
if (is_KXK<WHITE>(pos))
{
mi->evaluationFunction = &EvaluateKXK[WHITE];
return mi;
e->evaluationFunction = &EvaluateKXK[WHITE];
return e;
}
if (is_KXK<BLACK>(pos))
{
mi->evaluationFunction = &EvaluateKXK[BLACK];
return mi;
e->evaluationFunction = &EvaluateKXK[BLACK];
return e;
}
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
@@ -133,8 +133,8 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
return mi;
e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
return e;
}
}
@@ -145,26 +145,26 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
// scaling functions and we need to decide which one to use.
EndgameBase<ScaleFactor>* sf;
if ((sf = funcs->get<ScaleFactor>(key)) != NULL)
if ((sf = endgames.probe<ScaleFactor>(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
e->scalingFunction[sf->color()] = sf;
return e;
}
// Generic scaling functions that refer to more then one material
// distribution. Should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if (is_KBPsKs<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
if (is_KBPsKs<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
if (is_KQKRPs<WHITE>(pos))
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
else if (is_KQKRPs<BLACK>(pos))
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
@@ -174,32 +174,32 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// No pawns makes it difficult to win, even with a material advantage
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
{
mi->factor[WHITE] = (uint8_t)
e->factor[WHITE] = (uint8_t)
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
}
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
{
mi->factor[BLACK] = (uint8_t)
e->factor[BLACK] = (uint8_t)
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
}
@@ -209,7 +209,7 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
mi->spaceWeight = minorPieceCount * minorPieceCount;
e->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
@@ -221,8 +221,8 @@ MaterialEntry* MaterialTable::probe(const Position& pos) const {
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
mi->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return mi;
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return e;
}