diff --git a/src/nnue/evaluate_nnue_learner.cpp b/src/nnue/evaluate_nnue_learner.cpp index 78446af2..6e0572dd 100644 --- a/src/nnue/evaluate_nnue_learner.cpp +++ b/src/nnue/evaluate_nnue_learner.cpp @@ -214,7 +214,7 @@ namespace Eval::NNUE { std::vector gradient_norm_local(thread_pool.size(), 0.0); auto prev_batch_begin = examples.end(); - while (prev_batch_begin - examples.begin() >= batch_size) { + while ((long)(prev_batch_begin - examples.begin()) >= (long)batch_size) { auto batch_begin = prev_batch_begin - batch_size; auto batch_end = prev_batch_begin; auto size = batch_end - batch_begin; diff --git a/src/nnue/trainer/trainer_affine_transform.h b/src/nnue/trainer/trainer_affine_transform.h index b6d70aa4..53e8f904 100644 --- a/src/nnue/trainer/trainer_affine_transform.h +++ b/src/nnue/trainer/trainer_affine_transform.h @@ -95,7 +95,7 @@ namespace Eval::NNUE { { const auto size = batch_end - batch_begin; - if (output_.size() < kOutputDimensions * size) { + if ((long)output_.size() < (long)kOutputDimensions * size) { output_.resize(kOutputDimensions * size); gradients_.resize(kInputDimensions * size); } diff --git a/src/nnue/trainer/trainer_clipped_relu.h b/src/nnue/trainer/trainer_clipped_relu.h index eae35df6..ff883afc 100644 --- a/src/nnue/trainer/trainer_clipped_relu.h +++ b/src/nnue/trainer/trainer_clipped_relu.h @@ -46,7 +46,7 @@ namespace Eval::NNUE { { const auto size = batch_end - batch_begin; - if (output_.size() < kOutputDimensions * size) { + if ((long)output_.size() < (long)kOutputDimensions * size) { output_.resize(kOutputDimensions * size); gradients_.resize(kInputDimensions * size); } diff --git a/src/nnue/trainer/trainer_feature_transformer.h b/src/nnue/trainer/trainer_feature_transformer.h index 877a74bc..9afda728 100644 --- a/src/nnue/trainer/trainer_feature_transformer.h +++ b/src/nnue/trainer/trainer_feature_transformer.h @@ -93,7 +93,7 @@ namespace Eval::NNUE { { const auto size = batch_end - batch_begin; - if (output_.size() < kOutputDimensions * size) { + if ((long)output_.size() < (long)kOutputDimensions * size) { output_.resize(kOutputDimensions * size); gradients_.resize(kOutputDimensions * size); } diff --git a/src/nnue/trainer/trainer_input_slice.h b/src/nnue/trainer/trainer_input_slice.h index ad681d57..a94cae93 100644 --- a/src/nnue/trainer/trainer_input_slice.h +++ b/src/nnue/trainer/trainer_input_slice.h @@ -66,8 +66,8 @@ namespace Eval::NNUE { const LearnFloatType* step_start(ThreadPool& thread_pool, std::vector::const_iterator batch_begin, std::vector::const_iterator batch_end) { const auto size = batch_end - batch_begin; - - if (gradients_.size() < kInputDimensions * size) { + + if ((long)gradients_.size() < (long)kInputDimensions * size) { gradients_.resize(kInputDimensions * size); } @@ -244,7 +244,7 @@ namespace Eval::NNUE { { const auto size = batch_end - batch_begin; - if (output_.size() < kOutputDimensions * size) { + if ((long)output_.size() < (long)kOutputDimensions * size) { output_.resize(kOutputDimensions * size); gradients_.resize(kInputDimensions * size); }