mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-19 08:36:33 +08:00
Introduce namespace Material
And retire old struct MaterialTable simplifying the code. No functional change.
This commit is contained in:
@@ -17,7 +17,7 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <algorithm> // For std::min
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
@@ -81,18 +81,54 @@ namespace {
|
||||
&& pos.piece_count(Them, PAWN) >= 1;
|
||||
}
|
||||
|
||||
/// imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace Material {
|
||||
|
||||
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
|
||||
/// Material::probe() takes a position object as input, looks up a MaterialEntry
|
||||
/// object, and returns a pointer to it. If the material configuration is not
|
||||
/// already present in the table, it is computed and stored there, so we don't
|
||||
/// have to recompute everything when the same material configuration occurs again.
|
||||
|
||||
MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
|
||||
|
||||
Key key = pos.material_key();
|
||||
MaterialEntry* e = entries[key];
|
||||
Entry* e = entries[key];
|
||||
|
||||
// If e->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
@@ -100,10 +136,10 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
if (e->key == key)
|
||||
return e;
|
||||
|
||||
memset(e, 0, sizeof(MaterialEntry));
|
||||
memset(e, 0, sizeof(Entry));
|
||||
e->key = key;
|
||||
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
e->gamePhase = MaterialTable::game_phase(pos);
|
||||
e->gamePhase = game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
@@ -226,47 +262,11 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
}
|
||||
|
||||
|
||||
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int MaterialTable::imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialTable::game_phase() calculates the phase given the current
|
||||
/// Material::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialEntry.
|
||||
|
||||
Phase MaterialTable::game_phase(const Position& pos) {
|
||||
Phase game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
@@ -274,3 +274,5 @@ Phase MaterialTable::game_phase(const Position& pos) {
|
||||
: npm <= EndgameLimit ? PHASE_ENDGAME
|
||||
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
|
||||
} // namespace Material
|
||||
|
||||
Reference in New Issue
Block a user