mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-25 19:46:55 +08:00
Refactor Network Usage
Continuing from PR #4968, this update improves how Stockfish handles network usage, making it easier to manage and modify networks in the future. With the introduction of a dedicated Network class, creating networks has become straightforward. See uci.cpp: ```cpp NN::NetworkBig({EvalFileDefaultNameBig, "None", ""}, NN::embeddedNNUEBig) ``` The new `Network` encapsulates all network-related logic, significantly reducing the complexity previously required to support multiple network types, such as the distinction between small and big networks #4915. Non-Regression STC: https://tests.stockfishchess.org/tests/view/65edd26c0ec64f0526c43584 LLR: 2.94 (-2.94,2.94) <-1.75,0.25> Total: 33760 W: 8887 L: 8661 D: 16212 Ptnml(0-2): 143, 3795, 8808, 3961, 173 Non-Regression SMP STC: https://tests.stockfishchess.org/tests/view/65ed71970ec64f0526c42fdd LLR: 2.96 (-2.94,2.94) <-1.75,0.25> Total: 59088 W: 15121 L: 14931 D: 29036 Ptnml(0-2): 110, 6640, 15829, 6880, 85 Compiled with `make -j profile-build` ``` bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50 sf_base = 1568540 +/- 7637 (95%) sf_test = 1573129 +/- 7301 (95%) diff = 4589 +/- 8720 (95%) speedup = 0.29260% +/- 0.556% (95%) ``` Compiled with `make -j build` ``` bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50 sf_base = 1472653 +/- 7293 (95%) sf_test = 1491928 +/- 7661 (95%) diff = 19275 +/- 7154 (95%) speedup = 1.30886% +/- 0.486% (95%) ``` closes https://github.com/official-stockfish/Stockfish/pull/5100 No functional change
This commit is contained in:
422
src/nnue/network.cpp
Normal file
422
src/nnue/network.cpp
Normal file
@@ -0,0 +1,422 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "network.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <optional>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#include "../evaluate.h"
|
||||
#include "../incbin/incbin.h"
|
||||
#include "../misc.h"
|
||||
#include "../position.h"
|
||||
#include "../types.h"
|
||||
#include "nnue_architecture.h"
|
||||
#include "nnue_common.h"
|
||||
#include "nnue_misc.h"
|
||||
|
||||
namespace {
|
||||
// Macro to embed the default efficiently updatable neural network (NNUE) file
|
||||
// data in the engine binary (using incbin.h, by Dale Weiler).
|
||||
// This macro invocation will declare the following three variables
|
||||
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
|
||||
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
|
||||
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
|
||||
// Note that this does not work in Microsoft Visual Studio.
|
||||
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
|
||||
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
|
||||
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
|
||||
#else
|
||||
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
|
||||
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
|
||||
const unsigned int gEmbeddedNNUEBigSize = 1;
|
||||
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
|
||||
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
|
||||
const unsigned int gEmbeddedNNUESmallSize = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
namespace Stockfish::Eval::NNUE {
|
||||
|
||||
const EmbeddedNNUE embeddedNNUEBig(gEmbeddedNNUEBigData, gEmbeddedNNUEBigEnd, gEmbeddedNNUEBigSize);
|
||||
const EmbeddedNNUE
|
||||
embeddedNNUESmall(gEmbeddedNNUESmallData, gEmbeddedNNUESmallEnd, gEmbeddedNNUESmallSize);
|
||||
|
||||
|
||||
namespace Detail {
|
||||
|
||||
// Initialize the evaluation function parameters
|
||||
template<typename T>
|
||||
void initialize(AlignedPtr<T>& pointer) {
|
||||
|
||||
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
|
||||
std::memset(pointer.get(), 0, sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void initialize(LargePagePtr<T>& pointer) {
|
||||
|
||||
static_assert(alignof(T) <= 4096,
|
||||
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
|
||||
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
|
||||
std::memset(pointer.get(), 0, sizeof(T));
|
||||
}
|
||||
|
||||
// Read evaluation function parameters
|
||||
template<typename T>
|
||||
bool read_parameters(std::istream& stream, T& reference) {
|
||||
|
||||
std::uint32_t header;
|
||||
header = read_little_endian<std::uint32_t>(stream);
|
||||
if (!stream || header != T::get_hash_value())
|
||||
return false;
|
||||
return reference.read_parameters(stream);
|
||||
}
|
||||
|
||||
// Write evaluation function parameters
|
||||
template<typename T>
|
||||
bool write_parameters(std::ostream& stream, const T& reference) {
|
||||
|
||||
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
|
||||
return reference.write_parameters(stream);
|
||||
}
|
||||
|
||||
} // namespace Detail
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::load(const std::string& rootDirectory, std::string evalfilePath) {
|
||||
#if defined(DEFAULT_NNUE_DIRECTORY)
|
||||
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
|
||||
stringify(DEFAULT_NNUE_DIRECTORY)};
|
||||
#else
|
||||
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
|
||||
#endif
|
||||
|
||||
if (evalfilePath.empty())
|
||||
evalfilePath = evalFile.defaultName;
|
||||
|
||||
for (const auto& directory : dirs)
|
||||
{
|
||||
if (evalFile.current != evalfilePath)
|
||||
{
|
||||
if (directory != "<internal>")
|
||||
{
|
||||
load_user_net(directory, evalfilePath);
|
||||
}
|
||||
|
||||
if (directory == "<internal>" && evalfilePath == evalFile.defaultName)
|
||||
{
|
||||
load_internal();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::save(const std::optional<std::string>& filename) const {
|
||||
std::string actualFilename;
|
||||
std::string msg;
|
||||
|
||||
if (filename.has_value())
|
||||
actualFilename = filename.value();
|
||||
else
|
||||
{
|
||||
if (evalFile.current != evalFile.defaultName)
|
||||
{
|
||||
msg = "Failed to export a net. "
|
||||
"A non-embedded net can only be saved if the filename is specified";
|
||||
|
||||
sync_cout << msg << sync_endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
actualFilename = evalFile.defaultName;
|
||||
}
|
||||
|
||||
std::ofstream stream(actualFilename, std::ios_base::binary);
|
||||
bool saved = save(stream, evalFile.current, evalFile.netDescription);
|
||||
|
||||
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
|
||||
|
||||
sync_cout << msg << sync_endl;
|
||||
return saved;
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
Value Network<Arch, Transformer>::evaluate(const Position& pos,
|
||||
bool adjusted,
|
||||
int* complexity,
|
||||
bool psqtOnly) const {
|
||||
// We manually align the arrays on the stack because with gcc < 9.3
|
||||
// overaligning stack variables with alignas() doesn't work correctly.
|
||||
|
||||
constexpr uint64_t alignment = CacheLineSize;
|
||||
constexpr int delta = 24;
|
||||
|
||||
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
||||
TransformedFeatureType transformedFeaturesUnaligned
|
||||
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
|
||||
+ alignment / sizeof(TransformedFeatureType)];
|
||||
|
||||
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
||||
#else
|
||||
alignas(alignment) TransformedFeatureType transformedFeatures
|
||||
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
|
||||
#endif
|
||||
|
||||
ASSERT_ALIGNED(transformedFeatures, alignment);
|
||||
|
||||
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
||||
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket, psqtOnly);
|
||||
const auto positional = !psqtOnly ? (network[bucket]->propagate(transformedFeatures)) : 0;
|
||||
|
||||
if (complexity)
|
||||
*complexity = !psqtOnly ? std::abs(psqt - positional) / OutputScale : 0;
|
||||
|
||||
// Give more value to positional evaluation when adjusted flag is set
|
||||
if (adjusted)
|
||||
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
|
||||
/ (1024 * OutputScale));
|
||||
else
|
||||
return static_cast<Value>((psqt + positional) / OutputScale);
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::verify(std::string evalfilePath) const {
|
||||
if (evalfilePath.empty())
|
||||
evalfilePath = evalFile.defaultName;
|
||||
|
||||
if (evalFile.current != evalfilePath)
|
||||
{
|
||||
std::string msg1 =
|
||||
"Network evaluation parameters compatible with the engine must be available.";
|
||||
std::string msg2 = "The network file " + evalfilePath + " was not loaded successfully.";
|
||||
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
|
||||
"including the directory name, to the network file.";
|
||||
std::string msg4 = "The default net can be downloaded from: "
|
||||
"https://tests.stockfishchess.org/api/nn/"
|
||||
+ evalFile.defaultName;
|
||||
std::string msg5 = "The engine will be terminated now.";
|
||||
|
||||
sync_cout << "info string ERROR: " << msg1 << sync_endl;
|
||||
sync_cout << "info string ERROR: " << msg2 << sync_endl;
|
||||
sync_cout << "info string ERROR: " << msg3 << sync_endl;
|
||||
sync_cout << "info string ERROR: " << msg4 << sync_endl;
|
||||
sync_cout << "info string ERROR: " << msg5 << sync_endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
sync_cout << "info string NNUE evaluation using " << evalfilePath << sync_endl;
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::hint_common_access(const Position& pos, bool psqtOnl) const {
|
||||
featureTransformer->hint_common_access(pos, psqtOnl);
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
NnueEvalTrace Network<Arch, Transformer>::trace_evaluate(const Position& pos) const {
|
||||
// We manually align the arrays on the stack because with gcc < 9.3
|
||||
// overaligning stack variables with alignas() doesn't work correctly.
|
||||
constexpr uint64_t alignment = CacheLineSize;
|
||||
|
||||
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
||||
TransformedFeatureType transformedFeaturesUnaligned
|
||||
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
|
||||
+ alignment / sizeof(TransformedFeatureType)];
|
||||
|
||||
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
||||
#else
|
||||
alignas(alignment) TransformedFeatureType transformedFeatures
|
||||
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
|
||||
#endif
|
||||
|
||||
ASSERT_ALIGNED(transformedFeatures, alignment);
|
||||
|
||||
NnueEvalTrace t{};
|
||||
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
||||
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
|
||||
{
|
||||
const auto materialist =
|
||||
featureTransformer->transform(pos, transformedFeatures, bucket, false);
|
||||
const auto positional = network[bucket]->propagate(transformedFeatures);
|
||||
|
||||
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
|
||||
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::load_user_net(const std::string& dir,
|
||||
const std::string& evalfilePath) {
|
||||
std::ifstream stream(dir + evalfilePath, std::ios::binary);
|
||||
auto description = load(stream);
|
||||
|
||||
if (description.has_value())
|
||||
{
|
||||
evalFile.current = evalfilePath;
|
||||
evalFile.netDescription = description.value();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::load_internal() {
|
||||
// C++ way to prepare a buffer for a memory stream
|
||||
class MemoryBuffer: public std::basic_streambuf<char> {
|
||||
public:
|
||||
MemoryBuffer(char* p, size_t n) {
|
||||
setg(p, p, p + n);
|
||||
setp(p, p + n);
|
||||
}
|
||||
};
|
||||
|
||||
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(embedded.data)),
|
||||
size_t(embedded.size));
|
||||
|
||||
std::istream stream(&buffer);
|
||||
auto description = load(stream);
|
||||
|
||||
if (description.has_value())
|
||||
{
|
||||
evalFile.current = evalFile.defaultName;
|
||||
evalFile.netDescription = description.value();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
void Network<Arch, Transformer>::initialize() {
|
||||
Detail::initialize(featureTransformer);
|
||||
for (std::size_t i = 0; i < LayerStacks; ++i)
|
||||
Detail::initialize(network[i]);
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::save(std::ostream& stream,
|
||||
const std::string& name,
|
||||
const std::string& netDescription) const {
|
||||
if (name.empty() || name == "None")
|
||||
return false;
|
||||
|
||||
return write_parameters(stream, netDescription);
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
std::optional<std::string> Network<Arch, Transformer>::load(std::istream& stream) {
|
||||
initialize();
|
||||
std::string description;
|
||||
|
||||
return read_parameters(stream, description) ? std::make_optional(description) : std::nullopt;
|
||||
}
|
||||
|
||||
|
||||
// Read network header
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::read_header(std::istream& stream,
|
||||
std::uint32_t* hashValue,
|
||||
std::string* desc) const {
|
||||
std::uint32_t version, size;
|
||||
|
||||
version = read_little_endian<std::uint32_t>(stream);
|
||||
*hashValue = read_little_endian<std::uint32_t>(stream);
|
||||
size = read_little_endian<std::uint32_t>(stream);
|
||||
if (!stream || version != Version)
|
||||
return false;
|
||||
desc->resize(size);
|
||||
stream.read(&(*desc)[0], size);
|
||||
return !stream.fail();
|
||||
}
|
||||
|
||||
|
||||
// Write network header
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::write_header(std::ostream& stream,
|
||||
std::uint32_t hashValue,
|
||||
const std::string& desc) const {
|
||||
write_little_endian<std::uint32_t>(stream, Version);
|
||||
write_little_endian<std::uint32_t>(stream, hashValue);
|
||||
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
|
||||
stream.write(&desc[0], desc.size());
|
||||
return !stream.fail();
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::read_parameters(std::istream& stream,
|
||||
std::string& netDescription) const {
|
||||
std::uint32_t hashValue;
|
||||
if (!read_header(stream, &hashValue, &netDescription))
|
||||
return false;
|
||||
if (hashValue != Network::hash)
|
||||
return false;
|
||||
if (!Detail::read_parameters(stream, *featureTransformer))
|
||||
return false;
|
||||
for (std::size_t i = 0; i < LayerStacks; ++i)
|
||||
{
|
||||
if (!Detail::read_parameters(stream, *(network[i])))
|
||||
return false;
|
||||
}
|
||||
return stream && stream.peek() == std::ios::traits_type::eof();
|
||||
}
|
||||
|
||||
|
||||
template<typename Arch, typename Transformer>
|
||||
bool Network<Arch, Transformer>::write_parameters(std::ostream& stream,
|
||||
const std::string& netDescription) const {
|
||||
if (!write_header(stream, Network::hash, netDescription))
|
||||
return false;
|
||||
if (!Detail::write_parameters(stream, *featureTransformer))
|
||||
return false;
|
||||
for (std::size_t i = 0; i < LayerStacks; ++i)
|
||||
{
|
||||
if (!Detail::write_parameters(stream, *(network[i])))
|
||||
return false;
|
||||
}
|
||||
return bool(stream);
|
||||
}
|
||||
|
||||
// Explicit template instantiation
|
||||
|
||||
template class Network<
|
||||
NetworkArchitecture<TransformedFeatureDimensionsBig, L2Big, L3Big>,
|
||||
FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>;
|
||||
|
||||
template class Network<
|
||||
NetworkArchitecture<TransformedFeatureDimensionsSmall, L2Small, L3Small>,
|
||||
FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>;
|
||||
|
||||
} // namespace Stockfish::Eval::NNUE
|
||||
Reference in New Issue
Block a user