Refactor Network Usage

Continuing from PR #4968, this update improves how Stockfish handles network
usage, making it easier to manage and modify networks in the future.

With the introduction of a dedicated Network class, creating networks has become
straightforward. See uci.cpp:
```cpp
NN::NetworkBig({EvalFileDefaultNameBig, "None", ""}, NN::embeddedNNUEBig)
```

The new `Network` encapsulates all network-related logic, significantly reducing
the complexity previously required to support multiple network types, such as
the distinction between small and big networks #4915.

Non-Regression STC:
https://tests.stockfishchess.org/tests/view/65edd26c0ec64f0526c43584
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 33760 W: 8887 L: 8661 D: 16212
Ptnml(0-2): 143, 3795, 8808, 3961, 173

Non-Regression SMP STC:
https://tests.stockfishchess.org/tests/view/65ed71970ec64f0526c42fdd
LLR: 2.96 (-2.94,2.94) <-1.75,0.25>
Total: 59088 W: 15121 L: 14931 D: 29036
Ptnml(0-2): 110, 6640, 15829, 6880, 85

Compiled with `make -j profile-build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1568540 +/-   7637 (95%)
sf_test =  1573129 +/-   7301 (95%)
diff    =     4589 +/-   8720 (95%)
speedup = 0.29260% +/- 0.556% (95%)
```

Compiled with `make -j build`
```
bash ./bench_parallel.sh ./stockfish ./stockfish-nnue 13 50

sf_base =  1472653 +/-   7293 (95%)
sf_test =  1491928 +/-   7661 (95%)
diff    =    19275 +/-   7154 (95%)
speedup = 1.30886% +/- 0.486% (95%)
```

closes https://github.com/official-stockfish/Stockfish/pull/5100

No functional change
This commit is contained in:
Disservin
2024-03-09 14:42:37 +01:00
parent f072634e24
commit 1a26d698de
18 changed files with 948 additions and 826 deletions

422
src/nnue/network.cpp Normal file
View File

@@ -0,0 +1,422 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "network.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <optional>
#include <type_traits>
#include <vector>
#include "../evaluate.h"
#include "../incbin/incbin.h"
#include "../misc.h"
#include "../position.h"
#include "../types.h"
#include "nnue_architecture.h"
#include "nnue_common.h"
#include "nnue_misc.h"
namespace {
// Macro to embed the default efficiently updatable neural network (NNUE) file
// data in the engine binary (using incbin.h, by Dale Weiler).
// This macro invocation will declare the following three variables
// const unsigned char gEmbeddedNNUEData[]; // a pointer to the embedded data
// const unsigned char *const gEmbeddedNNUEEnd; // a marker to the end
// const unsigned int gEmbeddedNNUESize; // the size of the embedded file
// Note that this does not work in Microsoft Visual Studio.
#if !defined(_MSC_VER) && !defined(NNUE_EMBEDDING_OFF)
INCBIN(EmbeddedNNUEBig, EvalFileDefaultNameBig);
INCBIN(EmbeddedNNUESmall, EvalFileDefaultNameSmall);
#else
const unsigned char gEmbeddedNNUEBigData[1] = {0x0};
const unsigned char* const gEmbeddedNNUEBigEnd = &gEmbeddedNNUEBigData[1];
const unsigned int gEmbeddedNNUEBigSize = 1;
const unsigned char gEmbeddedNNUESmallData[1] = {0x0};
const unsigned char* const gEmbeddedNNUESmallEnd = &gEmbeddedNNUESmallData[1];
const unsigned int gEmbeddedNNUESmallSize = 1;
#endif
}
namespace Stockfish::Eval::NNUE {
const EmbeddedNNUE embeddedNNUEBig(gEmbeddedNNUEBigData, gEmbeddedNNUEBigEnd, gEmbeddedNNUEBigSize);
const EmbeddedNNUE
embeddedNNUESmall(gEmbeddedNNUESmallData, gEmbeddedNNUESmallEnd, gEmbeddedNNUESmallSize);
namespace Detail {
// Initialize the evaluation function parameters
template<typename T>
void initialize(AlignedPtr<T>& pointer) {
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
template<typename T>
void initialize(LargePagePtr<T>& pointer) {
static_assert(alignof(T) <= 4096,
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
std::memset(pointer.get(), 0, sizeof(T));
}
// Read evaluation function parameters
template<typename T>
bool read_parameters(std::istream& stream, T& reference) {
std::uint32_t header;
header = read_little_endian<std::uint32_t>(stream);
if (!stream || header != T::get_hash_value())
return false;
return reference.read_parameters(stream);
}
// Write evaluation function parameters
template<typename T>
bool write_parameters(std::ostream& stream, const T& reference) {
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
return reference.write_parameters(stream);
}
} // namespace Detail
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load(const std::string& rootDirectory, std::string evalfilePath) {
#if defined(DEFAULT_NNUE_DIRECTORY)
std::vector<std::string> dirs = {"<internal>", "", rootDirectory,
stringify(DEFAULT_NNUE_DIRECTORY)};
#else
std::vector<std::string> dirs = {"<internal>", "", rootDirectory};
#endif
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
for (const auto& directory : dirs)
{
if (evalFile.current != evalfilePath)
{
if (directory != "<internal>")
{
load_user_net(directory, evalfilePath);
}
if (directory == "<internal>" && evalfilePath == evalFile.defaultName)
{
load_internal();
}
}
}
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::save(const std::optional<std::string>& filename) const {
std::string actualFilename;
std::string msg;
if (filename.has_value())
actualFilename = filename.value();
else
{
if (evalFile.current != evalFile.defaultName)
{
msg = "Failed to export a net. "
"A non-embedded net can only be saved if the filename is specified";
sync_cout << msg << sync_endl;
return false;
}
actualFilename = evalFile.defaultName;
}
std::ofstream stream(actualFilename, std::ios_base::binary);
bool saved = save(stream, evalFile.current, evalFile.netDescription);
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
sync_cout << msg << sync_endl;
return saved;
}
template<typename Arch, typename Transformer>
Value Network<Arch, Transformer>::evaluate(const Position& pos,
bool adjusted,
int* complexity,
bool psqtOnly) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket, psqtOnly);
const auto positional = !psqtOnly ? (network[bucket]->propagate(transformedFeatures)) : 0;
if (complexity)
*complexity = !psqtOnly ? std::abs(psqt - positional) / OutputScale : 0;
// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
/ (1024 * OutputScale));
else
return static_cast<Value>((psqt + positional) / OutputScale);
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::verify(std::string evalfilePath) const {
if (evalfilePath.empty())
evalfilePath = evalFile.defaultName;
if (evalFile.current != evalfilePath)
{
std::string msg1 =
"Network evaluation parameters compatible with the engine must be available.";
std::string msg2 = "The network file " + evalfilePath + " was not loaded successfully.";
std::string msg3 = "The UCI option EvalFile might need to specify the full path, "
"including the directory name, to the network file.";
std::string msg4 = "The default net can be downloaded from: "
"https://tests.stockfishchess.org/api/nn/"
+ evalFile.defaultName;
std::string msg5 = "The engine will be terminated now.";
sync_cout << "info string ERROR: " << msg1 << sync_endl;
sync_cout << "info string ERROR: " << msg2 << sync_endl;
sync_cout << "info string ERROR: " << msg3 << sync_endl;
sync_cout << "info string ERROR: " << msg4 << sync_endl;
sync_cout << "info string ERROR: " << msg5 << sync_endl;
exit(EXIT_FAILURE);
}
sync_cout << "info string NNUE evaluation using " << evalfilePath << sync_endl;
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::hint_common_access(const Position& pos, bool psqtOnl) const {
featureTransformer->hint_common_access(pos, psqtOnl);
}
template<typename Arch, typename Transformer>
NnueEvalTrace Network<Arch, Transformer>::trace_evaluate(const Position& pos) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
#endif
ASSERT_ALIGNED(transformedFeatures, alignment);
NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist =
featureTransformer->transform(pos, transformedFeatures, bucket, false);
const auto positional = network[bucket]->propagate(transformedFeatures);
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
}
return t;
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load_user_net(const std::string& dir,
const std::string& evalfilePath) {
std::ifstream stream(dir + evalfilePath, std::ios::binary);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalfilePath;
evalFile.netDescription = description.value();
}
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::load_internal() {
// C++ way to prepare a buffer for a memory stream
class MemoryBuffer: public std::basic_streambuf<char> {
public:
MemoryBuffer(char* p, size_t n) {
setg(p, p, p + n);
setp(p, p + n);
}
};
MemoryBuffer buffer(const_cast<char*>(reinterpret_cast<const char*>(embedded.data)),
size_t(embedded.size));
std::istream stream(&buffer);
auto description = load(stream);
if (description.has_value())
{
evalFile.current = evalFile.defaultName;
evalFile.netDescription = description.value();
}
}
template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::initialize() {
Detail::initialize(featureTransformer);
for (std::size_t i = 0; i < LayerStacks; ++i)
Detail::initialize(network[i]);
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::save(std::ostream& stream,
const std::string& name,
const std::string& netDescription) const {
if (name.empty() || name == "None")
return false;
return write_parameters(stream, netDescription);
}
template<typename Arch, typename Transformer>
std::optional<std::string> Network<Arch, Transformer>::load(std::istream& stream) {
initialize();
std::string description;
return read_parameters(stream, description) ? std::make_optional(description) : std::nullopt;
}
// Read network header
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::read_header(std::istream& stream,
std::uint32_t* hashValue,
std::string* desc) const {
std::uint32_t version, size;
version = read_little_endian<std::uint32_t>(stream);
*hashValue = read_little_endian<std::uint32_t>(stream);
size = read_little_endian<std::uint32_t>(stream);
if (!stream || version != Version)
return false;
desc->resize(size);
stream.read(&(*desc)[0], size);
return !stream.fail();
}
// Write network header
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::write_header(std::ostream& stream,
std::uint32_t hashValue,
const std::string& desc) const {
write_little_endian<std::uint32_t>(stream, Version);
write_little_endian<std::uint32_t>(stream, hashValue);
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
stream.write(&desc[0], desc.size());
return !stream.fail();
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::read_parameters(std::istream& stream,
std::string& netDescription) const {
std::uint32_t hashValue;
if (!read_header(stream, &hashValue, &netDescription))
return false;
if (hashValue != Network::hash)
return false;
if (!Detail::read_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::read_parameters(stream, *(network[i])))
return false;
}
return stream && stream.peek() == std::ios::traits_type::eof();
}
template<typename Arch, typename Transformer>
bool Network<Arch, Transformer>::write_parameters(std::ostream& stream,
const std::string& netDescription) const {
if (!write_header(stream, Network::hash, netDescription))
return false;
if (!Detail::write_parameters(stream, *featureTransformer))
return false;
for (std::size_t i = 0; i < LayerStacks; ++i)
{
if (!Detail::write_parameters(stream, *(network[i])))
return false;
}
return bool(stream);
}
// Explicit template instantiation
template class Network<
NetworkArchitecture<TransformedFeatureDimensionsBig, L2Big, L3Big>,
FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>;
template class Network<
NetworkArchitecture<TransformedFeatureDimensionsSmall, L2Small, L3Small>,
FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>;
} // namespace Stockfish::Eval::NNUE