mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-27 12:36:15 +08:00
PascalCase -> snake_case for consistency with the rest of the codebase.
This commit is contained in:
@@ -14,12 +14,12 @@ namespace Eval::NNUE::Features {
|
||||
class Factorizer {
|
||||
public:
|
||||
// Get the dimensionality of the learning feature
|
||||
static constexpr IndexType GetDimensions() {
|
||||
static constexpr IndexType get_dimensions() {
|
||||
return FeatureType::kDimensions;
|
||||
}
|
||||
|
||||
// Get index of learning feature and scale of learning rate
|
||||
static void AppendTrainingFeatures(
|
||||
static void append_training_features(
|
||||
IndexType base_index, std::vector<TrainingFeature>* training_features) {
|
||||
|
||||
assert(base_index <FeatureType::kDimensions);
|
||||
@@ -35,7 +35,7 @@ namespace Eval::NNUE::Features {
|
||||
|
||||
// Add the original input features to the learning features
|
||||
template <typename FeatureType>
|
||||
IndexType AppendBaseFeature(
|
||||
IndexType append_base_feature(
|
||||
FeatureProperties properties, IndexType base_index,
|
||||
std::vector<TrainingFeature>* training_features) {
|
||||
|
||||
@@ -47,7 +47,7 @@ namespace Eval::NNUE::Features {
|
||||
|
||||
// If the learning rate scale is not 0, inherit other types of learning features
|
||||
template <typename FeatureType>
|
||||
IndexType InheritFeaturesIfRequired(
|
||||
IndexType inherit_features_if_required(
|
||||
IndexType index_offset, FeatureProperties properties, IndexType base_index,
|
||||
std::vector<TrainingFeature>* training_features) {
|
||||
|
||||
@@ -55,17 +55,17 @@ namespace Eval::NNUE::Features {
|
||||
return 0;
|
||||
}
|
||||
|
||||
assert(properties.dimensions == Factorizer<FeatureType>::GetDimensions());
|
||||
assert(properties.dimensions == Factorizer<FeatureType>::get_dimensions());
|
||||
assert(base_index < FeatureType::kDimensions);
|
||||
|
||||
const auto start = training_features->size();
|
||||
Factorizer<FeatureType>::AppendTrainingFeatures(
|
||||
Factorizer<FeatureType>::append_training_features(
|
||||
base_index, training_features);
|
||||
|
||||
for (auto i = start; i < training_features->size(); ++i) {
|
||||
auto& feature = (*training_features)[i];
|
||||
assert(feature.GetIndex() < Factorizer<FeatureType>::GetDimensions());
|
||||
feature.ShiftIndex(index_offset);
|
||||
assert(feature.get_index() < Factorizer<FeatureType>::get_dimensions());
|
||||
feature.shift_index(index_offset);
|
||||
}
|
||||
|
||||
return properties.dimensions;
|
||||
@@ -73,7 +73,7 @@ namespace Eval::NNUE::Features {
|
||||
|
||||
// Return the index difference as needed, without adding learning features
|
||||
// Call instead of InheritFeaturesIfRequired() if there are no corresponding features
|
||||
IndexType SkipFeatures(FeatureProperties properties) {
|
||||
IndexType skip_features(FeatureProperties properties) {
|
||||
if (!properties.active)
|
||||
return 0;
|
||||
|
||||
@@ -82,7 +82,7 @@ namespace Eval::NNUE::Features {
|
||||
|
||||
// Get the dimensionality of the learning feature
|
||||
template <std::size_t N>
|
||||
constexpr IndexType GetActiveDimensions(
|
||||
constexpr IndexType get_active_dimensions(
|
||||
const FeatureProperties (&properties)[N]) {
|
||||
|
||||
static_assert(N > 0, "");
|
||||
@@ -100,7 +100,7 @@ namespace Eval::NNUE::Features {
|
||||
|
||||
// get the number of elements in the array
|
||||
template <typename T, std::size_t N>
|
||||
constexpr std::size_t GetArrayLength(const T (&/*array*/)[N]) {
|
||||
constexpr std::size_t get_array_length(const T (&/*array*/)[N]) {
|
||||
return N;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user