mirror of
https://github.com/HChaZZY/Stockfish.git
synced 2025-12-19 16:46:30 +08:00
Add Tord's polynomial material balance
Use a polynomial weighted evaluation to calculate material value. This is far more flexible and elegant then applying a series of single euristic rules as before. Also correct a design issue in which we returned two values, one for middle game and one for endgame, while instead, because game phase is a function of board material itself, only one value should be calculated and used both for mid and end game. Verified it is equivalent to the tuning branch results with parameter values sampled after 40.000 games. After 999 games at 1+0 Mod vs Orig +277 =482 -240 51.85% 518.0/999 +13 ELO Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
@@ -40,7 +40,18 @@ namespace {
|
||||
const Value BishopPairMidgameBonus = Value(109);
|
||||
const Value BishopPairEndgameBonus = Value(97);
|
||||
|
||||
Key KNNKMaterialKey, KKNNMaterialKey;
|
||||
// Polynomial material balance parameters
|
||||
const Value RedundantQueenPenalty = Value(320);
|
||||
const Value RedundantRookPenalty = Value(554);
|
||||
const int LinearCoefficients[6] = { 1709, -137, -1185, -166, 141, 59 };
|
||||
|
||||
const int QuadraticCoefficientsSameColor[][6] = {
|
||||
{ 0, 0, 0, 0, 0, 0 }, { 33, -6, 0, 0, 0, 0 }, { 29, 269, -12, 0, 0, 0 },
|
||||
{ 0, 19, -4, 0, 0, 0 }, { -35, -10, 40, 95, 50, 0 }, { 52, 23, 78, 144, -11, -33 } };
|
||||
|
||||
const int QuadraticCoefficientsOppositeColor[][6] = {
|
||||
{ 0, 0, 0, 0, 0, 0 }, { -5, 0, 0, 0, 0, 0 }, { -33, 23, 0, 0, 0, 0 },
|
||||
{ 17, 25, -3, 0, 0, 0 }, { 10, -2, -19, -67, 0, 0 }, { 69, 64, -41, 116, 137, 0 } };
|
||||
|
||||
// Unmapped endgame evaluation and scaling functions, these
|
||||
// are accessed direcly and not through the function maps.
|
||||
@@ -50,6 +61,8 @@ namespace {
|
||||
ScalingFunction<KQKRP> ScaleKQKRP(WHITE), ScaleKRPKQ(BLACK);
|
||||
ScalingFunction<KPsK> ScaleKPsK(WHITE), ScaleKKPs(BLACK);
|
||||
ScalingFunction<KPKP> ScaleKPKPw(WHITE), ScaleKPKPb(BLACK);
|
||||
|
||||
Key KNNKMaterialKey, KKNNMaterialKey;
|
||||
}
|
||||
|
||||
|
||||
@@ -261,10 +274,10 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
||||
|
||||
// Evaluate the material balance
|
||||
|
||||
Color c;
|
||||
const int bishopsPair_count[2] = { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(BLACK, BISHOP) > 1 };
|
||||
Color c, them;
|
||||
int sign;
|
||||
Value egValue = Value(0);
|
||||
Value mgValue = Value(0);
|
||||
int matValue = 0;
|
||||
|
||||
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
|
||||
{
|
||||
@@ -291,30 +304,37 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
||||
}
|
||||
}
|
||||
|
||||
// Bishop pair
|
||||
if (pos.piece_count(c, BISHOP) >= 2)
|
||||
{
|
||||
mgValue += sign * BishopPairMidgameBonus;
|
||||
egValue += sign * BishopPairEndgameBonus;
|
||||
}
|
||||
|
||||
// Knights are stronger when there are many pawns on the board. The
|
||||
// formula is taken from Larry Kaufman's paper "The Evaluation of Material
|
||||
// Imbalances in Chess":
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
|
||||
mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
|
||||
egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
|
||||
|
||||
// Redundancy of major pieces, again based on Kaufman's paper:
|
||||
if (pos.piece_count(c, ROOK) >= 1)
|
||||
matValue -= sign * ((pos.piece_count(c, ROOK) - 1) * RedundantRookPenalty + pos.piece_count(c, QUEEN) * RedundantQueenPenalty);
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
//
|
||||
// We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece",
|
||||
// this allow us to be more flexible in defining bishop pair bonuses.
|
||||
them = opposite_color(c);
|
||||
for (PieceType pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
|
||||
mgValue -= sign * v;
|
||||
egValue -= sign * v;
|
||||
int c1, c2, c3;
|
||||
c1 = sign * (pt1 != NO_PIECE_TYPE ? pos.piece_count(c, pt1) : bishopsPair_count[c]);
|
||||
if (!c1)
|
||||
continue;
|
||||
|
||||
matValue += c1 * LinearCoefficients[pt1];
|
||||
|
||||
for (PieceType pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
{
|
||||
c2 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(c, pt2) : bishopsPair_count[c]);
|
||||
c3 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(them, pt2) : bishopsPair_count[them]);
|
||||
matValue += c1 * c2 * QuadraticCoefficientsSameColor[pt1][pt2];
|
||||
matValue += c1 * c3 * QuadraticCoefficientsOppositeColor[pt1][pt2];
|
||||
}
|
||||
}
|
||||
}
|
||||
mi->mgValue = int16_t(mgValue);
|
||||
mi->egValue = int16_t(egValue);
|
||||
|
||||
mi->value = int16_t(matValue / 16);
|
||||
return mi;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user